请问老师HDF5 error back trace怎么解决?


(AustinWoo) #1

请问老师HDF5 error back trace怎么解决?

克隆策略

    {"Description":"实验创建于2020/9/19","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-1295:input_data","SourceOutputPortId":"-240:data"},{"DestinationInputPortId":"-1371:input_1","SourceOutputPortId":"-1295:data"},{"DestinationInputPortId":"-726:features","SourceOutputPortId":"-1298:data"},{"DestinationInputPortId":"-726:training_ds","SourceOutputPortId":"-1371:data_1"},{"DestinationInputPortId":"-726:predict_ds","SourceOutputPortId":"-1371:data_2"}],"ModuleNodes":[{"Id":"-240","ModuleId":"BigQuantSpace.input_csv.input_csv-v5","ModuleParameters":[{"Name":"file","Value":"model_data.csv","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"coding","Value":"utf-8","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dtypes","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"date_type","Value":"%Y-%m-%d","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"date_cols","Value":"['date']","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[],"OutputPortsInternal":[{"Name":"data","NodeId":"-240","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"-1295","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1295"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1295"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1295","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-1298","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"return_1\nreturn_3\nreturn_5\nreturn_10\nreturn_20\nMACD\nMACDsignal\nMACDhist\nKAMA\nslowk\nslowd\nfastk\nfastd\nboll_upper\nboll_middle\nboll_lower\nrsi_6\nrsi_9\nrsi_14\nWILLR\nSMA_5\nSMA_10\nSMA_20\nEMA_5\nEMA_10\nEMA_20\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-1298"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1298","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-1371","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。\n input_df = input_1.read_df().reset_index(drop='True')\n out1 = input_df[:2500]\n out2 = input_df[2500:]\n data_1 = DataSource.write_df(out1)\n data_2 = DataSource.write_pickle(out2)\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-1371"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-1371"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-1371"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-1371","OutputType":null},{"Name":"data_2","NodeId":"-1371","OutputType":null},{"Name":"data_3","NodeId":"-1371","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true},{"Id":"-726","ModuleId":"BigQuantSpace.extra_trees_classifier.extra_trees_classifier-v1","ModuleParameters":[{"Name":"criterion","Value":"gini","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"iterations","Value":10,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_depth","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"min_samples_per_leaf","Value":200,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"key_cols","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"workers","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"random_state","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"other_train_parameters","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-726"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-726"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-726"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-726"}],"OutputPortsInternal":[{"Name":"output_model","NodeId":"-726","OutputType":null},{"Name":"predictions","NodeId":"-726","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-240' Position='-11,-173,200,200'/><NodePosition Node='-1295' Position='42,-29,200,200'/><NodePosition Node='-1298' Position='365,-152,200,200'/><NodePosition Node='-1371' Position='49,78,200,200'/><NodePosition Node='-726' Position='125.03482055664062,203.51512145996094,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [1]:
    # 本代码由可视化策略环境自动生成 2020年9月19日 23:44
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m1_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。
        input_df = input_1.read_df().reset_index(drop='True')
        out1 = input_df[:2500]
        out2 = input_df[2500:]
        data_1 = DataSource.write_df(out1)
        data_2 = DataSource.write_pickle(out2)
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m1_post_run_bigquant_run(outputs):
        return outputs
    
    
    m2 = M.input_csv.v5(
        file='model_data.csv',
        coding='utf-8',
        dtypes={},
        date_type='%Y-%m-%d',
        date_cols=['date']
    )
    
    m4 = M.dropnan.v2(
        input_data=m2.data
    )
    
    m1 = M.cached.v3(
        input_1=m4.data,
        run=m1_run_bigquant_run,
        post_run=m1_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m5 = M.input_features.v1(
        features="""return_1
    return_3
    return_5
    return_10
    return_20
    MACD
    MACDsignal
    MACDhist
    KAMA
    slowk
    slowd
    fastk
    fastd
    boll_upper
    boll_middle
    boll_lower
    rsi_6
    rsi_9
    rsi_14
    WILLR
    SMA_5
    SMA_10
    SMA_20
    EMA_5
    EMA_10
    EMA_20
    """
    )
    
    m3 = M.extra_trees_classifier.v1(
        training_ds=m1.data_1,
        features=m5.data,
        predict_ds=m1.data_2,
        criterion='gini',
        iterations=10,
        feature_fraction=1,
        max_depth=30,
        min_samples_per_leaf=200,
        key_cols='date,instrument',
        workers=1,
        random_state=0,
        other_train_parameters={}
    )
    
    ---------------------------------------------------------------------------
    HDF5ExtError                              Traceback (most recent call last)
    HDF5ExtError: HDF5 error back trace
    
      File "H5F.c", line 511, in H5Fopen
        unable to open file
      File "H5Fint.c", line 1604, in H5F_open
        unable to read superblock
      File "H5Fsuper.c", line 413, in H5F__super_read
        file signature not found
    
    End of HDF5 error back trace
    
    Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/f/ce/fce936d232b844e2848a55d47912f0bfT'
    
    During handling of the above exception, another exception occurred:
    
    OSError                                   Traceback (most recent call last)
    <ipython-input-1-20a9e990700f> in <module>()
         81     workers=1,
         82     random_state=0,
    ---> 83     other_train_parameters={}
         84 )
    
    OSError: HDF5 error back trace
    
      File "H5F.c", line 511, in H5Fopen
        unable to open file
      File "H5Fint.c", line 1604, in H5F_open
        unable to read superblock
      File "H5Fsuper.c", line 413, in H5F__super_read
        file signature not found
    
    End of HDF5 error back trace
    
    Unable to open/create file '/var/app/data/bigquant/datasource/user/v3/f/ce/fce936d232b844e2848a55d47912f0bfT'

    (adhaha111) #2

    您好,这边没有您的CSV文件,所以暂时无法复现您的问题。目前看到您的python模块中 data_2 使用的是 write_pickle方法,这里应该使用 write_df