算法交易

算法交易是金融领域的技术革新,它利用高级数学模型和复杂算法来快速、准确地分析和解读市场动态,以制定并执行交易策略。这些算法能够在毫秒级别内对市场数据做出反应,远超人脑的处理速度。算法交易为金融行业提供了一个精细控制风险的途径。包括定点交易、套利交易和趋势跟踪等多元化策略的应用,有效提高了交易的准确性和效率。其背后的智能化系统可24小时不间断地监控市场,捕捉交易机会,大大减轻了人工作业负担,同时,极大地提升了在多变金融市场中的适应能力和盈利能力。更重要的是,由于大部分决策基于预定规则和数据模型,算法交易显著降低了情绪化决策的风险。然而,也需注意到,过度依赖算法可能导致失去对市场直觉的把握,并且在极端市场情况下,算法可能失效,导致不可预见的风险。总体而言,算法交易以其快速、精准和高效的特性,逐渐成为现代金融市场的核心竞争力。

Quant工具箱:量化开发之向量化回测框架

基于Scikit-learn的向量化回测框架

![](data:image/svg+xml;utf8,<svg xmlns='http://www.w3.org/2000/svg' width='874' height='611'></svg>)

回测是个老掉牙的问题了,开源社区也有不少优秀的回测框架,如zipline、backtrader等,那我们为什么要放弃他们而选择造轮子再设计一套

更新时间:2021-08-09 05:53

feynman量化系列—从均值方差到有效前沿

https://bigquant.com/experimentshare/e08fa32e798343f48fe1c5f07f6f6412

\

更新时间:2021-08-09 02:22

lightGBM_AI选股

https://bigquant.com/experimentshare/2fbb2629dcb0450bbf72e224835b4957

\

更新时间:2021-07-30 09:11

10大统计技术

无论你如何看待数据科学这门学科,都不能轻易忽视数据的重要性,以及我们分析、组织和理解数据的能力。Glassdoor 网站收集了大量的雇主和员工的反馈数据,发现在美国“25个最好的工作职位清单”中排名第一的是数据科学家。尽管排名摆在那里,但毫无疑问,数据科学家们研究的具体工作内容仍会不断增加。随着机器学习等技术变得越来越普遍,像深度学习这样的新兴领域获得了来自研究人员、工程师以及各大公司更多的关注,数据科学家会继续站在创新浪潮之巅并且推动技术的不断发展。

尽管拥有强大的编码能力非常重要,但数据科学也并非全部都是关于软件工程的(事实上,能够熟练掌握python已经足够很好的开展工作了)。数据科学

更新时间:2021-07-30 09:08

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2021-07-30 09:08

LSTM Networks应用于股票市场之Sequential Model

策略案例


https://bigquant.com/experimentshare/8594992a1d9345d98cbe949eb6297067

\

更新时间:2021-07-30 08:10

多层感知器回归模型案例

策略案例


https://bigquant.com/experimentshare/42bf93884b1246ad83c2874f06765732

\

更新时间:2021-07-30 07:26

用线性随机梯度下降-分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/0128ae6c66014eaf9b3b44b4eb2e9bb5

\

更新时间:2021-07-30 07:26

StockRanker排序

策略案例


https://bigquant.com/experimentshare/21cf886fbd794a66be617bfd57a0cb88

\

更新时间:2021-07-30 07:26

使用bigexpr表达式引擎开发AI策略

策略案例

https://bigquant.com/experimentshare/05251c753111424eaff32648838ac24f

\

更新时间:2021-07-30 07:26

分组计算

策略案例


https://bigquant.com/experimentshare/fd15bfc0f9d94a11b060f13685aa5591

\

更新时间:2021-07-30 07:25

策略中调用其他因子_非AI

2021年4月22日Q1&Q2问题:

策略案例


https://bigquant.com/experimentshare/d50c07db9f7f45168dd745027c04b6d8

\

更新时间:2021-07-30 07:25

策略中调用其他因子_AI

策略案例

https://bigquant.com/experimentshare/5cfd9186208047518a995e4394ba1099

\

更新时间:2021-07-30 07:25

超参优化

7月30日Meetup 模板案例:

策略案例


https://bigquant.com/experimentshare/99d8bec5248e4878b33a21bc119a6671

\

更新时间:2021-07-30 07:25

超参寻优调参顺序

策略案例


https://bigquant.com/experimentshare/fe8ec83484ca44148602d39a58545d75

\

更新时间:2021-07-30 07:25

华泰金工量化择时系列:牛熊指标在择时轮动中的应用探讨-华泰证券-20200407

/wiki/static/upload/73/7387f8bc-3d1b-4b37-ad6d-7e0d5ddcf4b2.pdf

\

更新时间:2021-04-22 03:55

A股量化择时研究报告:金融工程,战略做多不变-广发证券-20200329

/wiki/static/upload/0d/0dcd4d85-27e0-494c-85a8-911e809ac2bc.pdf

\

更新时间:2021-04-22 02:46

分页第1页第2页第3页第4页第5页第11页