\
更新时间:2022-08-31 01:47
机器学习和人工智能在量化投资的应用有很长的历史
机器学习在九十年代初的热潮中已经被大量运用于量化投资中。尽管受限于当时的计算能力和算法,但是由于在算法交易和CTA等领域中机器学习提供了一些更好的解决方案,机器学习在这些领域的应用一直延续到今天
机器学习在量化投资中应用的九个思考
本报告是系列报告的第一篇,简略介绍了机器学习运用到二级市场投资过程中的一些常见问题。这些问题覆盖了策略研发常见错误,策略归因,策略失效判断,机器学习平台的建立,交易系统和机器学习平台的对接以及机器学习对冲基金的团队架构。后续系列报告将会详细围绕这些问题展开
**适当使用下的机器学习
更新时间:2022-08-30 09:00
更新时间:2022-08-29 04:43
\
更新时间:2022-08-25 02:16
\
更新时间:2022-08-25 02:16
「股票及量化投资书籍分享」https://www.aliyundrive.com/s/4kajoeM7ock 点击链接保存,或者复制本段内容,打开「阿里云盘」APP 下载。
更新时间:2022-07-31 10:31
更新时间:2022-07-30 03:48
伴随着国内量化私募管理规模不断创出新高,量化交易中经常提及的算法交易工具逐渐被投资者熟知和青睐,市场上也涌现出了一大批优秀的算法交易服务商。
但与国外欧美市场算法交易份额80%-90%相比,国内算法交易发展方兴未艾,未来会有越来越多的专业投资者通过算法交易工具武装自己!
算法交易又称为黑盒交易,是指凭借IT技术的发展,利用算法完成订单拆分、挂单和撤单等交易环节,提供以成交为目的的自动化交易执行。其主要目标是保证执行效率、降低冲击成本、减少人力成本、保护交易意图、捕捉交易机会。
算法交易优势主要体现在三个方面:1.有效降低交易冲击成本;2.大幅提高交易执行效率;3.避免与竞争对手正面“交战
更新时间:2022-07-15 02:51
更新时间:2022-05-22 01:17
\
更新时间:2022-05-17 02:56
**关子敬:**在我看来海内外最主要的差别是:国内投资人是偏向喜欢直接对股价做预测,而海外直接预估股价比较少,主要做填充模型(imputation model),针对遗失数据做估算,特别是在
更新时间:2022-04-27 01:48
某机构调查发现,近年来,通过电子渠道进行的交易有所增加,所有资产类别的交易员都预计,这种上升趋势将在未来两年继续下去。
摩根大通的瓦克说,我们经历了两年多非常不寻常的疫情,在市场非常动荡的情况下,许多客户从办公室搬到家里,这对增加电子交易来说是一场完美风暴。
不过摩根大通的Wacker表示,人工智能和机器学习预计很快将超过移动技术,成为未来市场主要影响因素。
近年来,在动荡的市场中,算法交易已成为一种强有力的工具。算法交易的目的是: 1.通过分拆母单,拟合市场成交量分布,降低市场冲击成本; 2.隐藏下单意图,用特殊目的算法,有效保护交易意图,避免引起市场异动; 3.使用自动化算法交
更新时间:2022-04-24 09:46
主题:The Impact of AI to Global Asset Managers: The Responses and Adoptions
演讲人:关子敬 先生 Kevin Kwan彭博亚太区量化及数据科学专家
**完整视频观看地址:<https://webcast.roadshowchina.cn/cmeet/NlZBZVhZRGZ6Q1NSRjdrbmJqQjZUQT09
更新时间:2022-04-18 02:08
\
更新时间:2022-04-18 02:07
更新时间:2022-04-11 11:00
更新时间:2022-02-21 09:13
更新时间:2022-02-08 03:55
\
更新时间:2022-02-08 03:49
揭秘微软院亚研院AI量化投资研究 展望行业未来发展六大趋势
微软亚研院 2017 年以来共发表12篇AI量化投资学术研究,其中选股主题超过半数,其他涉及风险模型、算法交易、数据增强、时间序列预测、基础架构等话题。这些研究的突出特点是前沿和务实,具有较高参考价值。前沿是指使用的AI技术,大量运用近年来热门的图神经网络、注意力机制,并灵活应用最优传输、自步学习、知识蒸馏、解耦表征等工具;务实是指解决的具体问题,如“AI 模型如何应对市场规律变化”,“如何引导模型学习罕见样本”,“如何充分挖掘事件、舆情蕴藏的信息”等,这些都是业界实践中会遇到、接地气的问题。我们透过微
更新时间:2022-01-22 07:48
怎么用bigquant的架构来获取每天涨停的个股,不是用传统的代码打出来的那种,试过好多次!老是运行的结果错误!
更新时间:2022-01-12 06:18
更新时间:2021-12-14 13:18
更新时间:2021-12-14 13:08
Recent Advances in Reinforcement Learning in Finance
Ben Hambly-牛津大学数学研究所
Renyuan Xu-南加州大学工业与系统工程系
Huining Yang
2021 年 12 月 10 日
随着数据量的不断增加,金融行业的快速变化已经彻底改变了解决了数据处理和数据分析技术,带来了新的理论和计算挑战。与经典随机控制理论和其他分析应用相比,解决严重依赖模型假设的财务决策问题的方法,强化学习(RL)的新发展能够充分利用大量减少模型假设的财务数据,并改进复杂
更新时间:2021-12-13 07:43
更新时间:2021-11-30 02:54
/wiki/static/upload/db/db0cc25a-7ae5-4f16-8c66-4fa58c738cf1.pdf
\
全球著名猎头公司 Selby Jennings在最近的一份Quant全球市场报告中,根据其服务的量化对冲基金及自营交易公司的招聘需求,阐述了2021年全球Quant相关的招聘趋势、激励机制及薪酬现状。我们节选部分跟大家分享。
交易执行与高频交易的现状
对于很多头部的高频交易对冲基金来说,2020年是非常不可
更新时间:2021-11-24 08:20