算法交易

算法交易是金融领域的技术革新,它利用高级数学模型和复杂算法来快速、准确地分析和解读市场动态,以制定并执行交易策略。这些算法能够在毫秒级别内对市场数据做出反应,远超人脑的处理速度。算法交易为金融行业提供了一个精细控制风险的途径。包括定点交易、套利交易和趋势跟踪等多元化策略的应用,有效提高了交易的准确性和效率。其背后的智能化系统可24小时不间断地监控市场,捕捉交易机会,大大减轻了人工作业负担,同时,极大地提升了在多变金融市场中的适应能力和盈利能力。更重要的是,由于大部分决策基于预定规则和数据模型,算法交易显著降低了情绪化决策的风险。然而,也需注意到,过度依赖算法可能导致失去对市场直觉的把握,并且在极端市场情况下,算法可能失效,导致不可预见的风险。总体而言,算法交易以其快速、精准和高效的特性,逐渐成为现代金融市场的核心竞争力。

如何获取策略模拟资金曲线信息 ,再反向输出集成策略?

问题

如何获取策略模拟资金曲线信息 ,再反向输出集成策略?

视频

https://www.bilibili.com/video/BV1wR4y1C7ZT/?vd_source=ecd29bbd04cbefdfa426167c55241973

策略源码

[https://bigquant.com/experimentshare/b8a38c78cb844ac3bc3821e42497ff5

更新时间:2024-06-07 10:55

基于遗传算法挖掘股票因子

{{membership}}

https://bigquant.com/codeshare/9aa6342b-2c67-4417-afea-0d5874e5d340

\

更新时间:2024-06-07 10:55

情绪周期中涨跌停数、最高板数等代码编写

问题

35th Meetup提到的情绪周期中最高板数,涨停家数,跌停家数,昨日涨停今日表现(赚钱效应)等具体代码的编写。

\

视频

https://www.bilibili.com/video/BV1nT4y1q7Ut/

策略源码

[https://bigquant.com/experimentshare/224aa4076333436ea5a570694376631a](https://bigquant.com/experimentshare/224aa40763334

更新时间:2024-06-07 10:55

49th Meetup

Q1-@james:有什么另类的标注可以推荐下?

https://bigquant.com/wiki/doc/-0kcMgSnQXw

https://bigquant.com/wiki/doc/rengongzhineng-xilie-ershijiu-shouyi-linglei-biaoqian-zhengquan-fuben-xRMNFmmg00

{w:100}{w:100}{w:100}

更新时间:2024-06-07 10:55

深度学习在期货高频上的应用

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

53rd Meetup

\

更新时间:2024-06-07 10:55

如何将60分钟K线合成120分钟K线

问题

如何利用60分钟K线来合成120分钟K线呢?

视频

https://www.bilibili.com/video/BV1d54y1d7tv/

策略源码

https://bigquant.com/experimentshare/4e081ef44d3246f48551c6eee74f629d

\

更新时间:2024-06-07 10:55

“标记买卖点”代码复习

问题

知识库的策略分析里面有个“标记买卖点”的代码,能不能请老师把这个代码讲解一下,方面以后分析其它策略的时候使用。链接在这里:标记买卖点

\

视频

https://www.bilibili.com/video/BV1554y1f7Rf/

策略源码

[https://bigquant.com/experimentshare/1f66fd8421044f2a9884c9f1d3614ce1](ht

更新时间:2024-06-07 10:55

计算股价高低位的方法

问题

有什么方法或因子可以描述股价在高位或低位?

视频

https://www.bilibili.com/video/BV1ov4y1Z7Yg?share_source=copy_web

策略源码


[https://bigquant.com/experimentshare/9fa4d332095143b598308c57de203788](https://bigquant.com/experimentshare/9fa4d33

更新时间:2024-06-07 10:55

日线策略信号进行日内择时

【旧版使用说明】此文档为旧版本,相关文档可参考:

https://bigquant.com/wiki/doc/126-KkS3pYVIAH

20210624 Meetup 策略案例

https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1

\

更新时间:2024-06-07 10:55

自定义模块的使用方法

视频讲解

查看视频

策略源码

https://bigquant.com/codeshare/44ce0baf-6d4c-4f9c-9b7b-90ea4b12ab19

\

更新时间:2024-06-07 10:55

如何构建Halpha、wgt_return_Nm等动量因子

更新

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[http

更新时间:2024-06-07 10:55

storanker模型同时买入因子最大和最小

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

国泰君安alpha191中的count、regbeta、regresi三个函数

问题

国泰君安alpha191中的count、regbeta、regresi三个函数怎么定义?

视频

https://www.bilibili.com/video/BV1ov4y1Z7Yg?p=2&share_source=copy_web

\

策略源码

# 国泰君安 Count(a, n),过去5天close_0 > close_1 的天数
conditions = where(close_0

更新时间:2024-06-07 10:55

高频动量策略与主观超短交易

分享主题

高频动量策略与主观超短交易

\

视频回放

https://www.bilibili.com/video/BV1eG4y147Ki/

\

直播资料

/wiki/static/upload/70/70110d2a-6075-45b4-ad3c-618340dc720f.pdf

\

更新时间:2024-06-07 10:55

机器学习应用于底部反转策略的表现

问题

《机器学习应用于底部反转策略的表现》

视频

https://www.bilibili.com/video/BV1Jd4y1g7Gi/?vd_source=ecd29bbd04cbefdfa426167c55241973&t=1.3

\

策略源码

详见上述链接

更新时间:2024-06-07 10:55

2021-AI量化Meetup导览

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}导语

2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me

更新时间:2024-06-07 10:55

AI量化大赛获奖策略分享《龙头战法实盘-中证150增强》

视频

https://www.bilibili.com/video/BV11S4y197md?share_source=copy_web

策略源码

龙头战法实盘+AI-量化大赛NO.3-中证150增强[策略分享]

更新时间:2024-06-07 10:55

2022-AI量化Meetup导览

\

更新时间:2024-06-07 10:55

【主题分享】市场风格变化时策略如何自动切换

策略源码

A:市场风格变化时策略如何自动切换

更新时间:2024-06-07 10:55

高频回测算子使用(HFTrade)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

BigQuant平台策略构建流程

视频讲解

查看视频

策略源码

https://bigquant.com/codeshare/23bb6c6a-c4e3-4a7c-aed4-48c719c64dee

\

更新时间:2024-06-07 10:55

回测引擎常用功能示例

{{membership}}

https://bigquant.com/codeshare/ccb0fdad-c4da-424e-ace1-dd57ace94cec

\

更新时间:2024-06-07 10:55

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2024-06-07 10:55

AI量化交易常识

分享一些量化交易相关的常识信息。

五因子模型公式及应用

五因子模型是哪五个因子

**[多因子选股模型及优缺点](https://bigquant.com/wiki/doc/5asa5zug5a2q6ycj6ikh5qih5z6l5zcn6kn6ke

更新时间:2024-06-07 10:48

分页第1页第2页第3页第4页第5页第6页第7页第8页第9页
{link}