{"Description":"实验创建于2017/11/15","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-281:options_data","SourceOutputPortId":"-214:data_1"},{"DestinationInputPortId":"-403:inputs","SourceOutputPortId":"-210:data"},{"DestinationInputPortId":"-293:inputs","SourceOutputPortId":"-210:data"},{"DestinationInputPortId":"-14834:inputs","SourceOutputPortId":"-218:data"},{"DestinationInputPortId":"-692:input_data","SourceOutputPortId":"-316:data"},{"DestinationInputPortId":"-332:trained_model","SourceOutputPortId":"-320:data"},{"DestinationInputPortId":"-214:input_1","SourceOutputPortId":"-332:data"},{"DestinationInputPortId":"-692:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-333:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-341:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-300:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-307:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-316:features","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-438:input_2","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-443:input_2","SourceOutputPortId":"-2295:data"},{"DestinationInputPortId":"-293:outputs","SourceOutputPortId":"-259:data"},{"DestinationInputPortId":"-14841:inputs","SourceOutputPortId":"-14806:data"},{"DestinationInputPortId":"-14806:inputs","SourceOutputPortId":"-14834:data"},{"DestinationInputPortId":"-259:inputs","SourceOutputPortId":"-14841:data"},{"DestinationInputPortId":"-408:inputs","SourceOutputPortId":"-403:data"},{"DestinationInputPortId":"-446:inputs","SourceOutputPortId":"-408:data"},{"DestinationInputPortId":"-218:inputs","SourceOutputPortId":"-446:data"},{"DestinationInputPortId":"-425:input_data","SourceOutputPortId":"-2290:data"},{"DestinationInputPortId":"-289:instruments","SourceOutputPortId":"-620:data"},{"DestinationInputPortId":"-300:instruments","SourceOutputPortId":"-620:data"},{"DestinationInputPortId":"-429:input_data","SourceOutputPortId":"-692:data"},{"DestinationInputPortId":"-436:input_2","SourceOutputPortId":"-333:data"},{"DestinationInputPortId":"-332:input_data","SourceOutputPortId":"-341:data"},{"DestinationInputPortId":"-214:input_2","SourceOutputPortId":"-341:data"},{"DestinationInputPortId":"-2290:data1","SourceOutputPortId":"-289:data"},{"DestinationInputPortId":"-307:input_data","SourceOutputPortId":"-300:data"},{"DestinationInputPortId":"-2290:data2","SourceOutputPortId":"-307:data"},{"DestinationInputPortId":"-316:instruments","SourceOutputPortId":"-322:data"},{"DestinationInputPortId":"-281:instruments","SourceOutputPortId":"-322:data"},{"DestinationInputPortId":"-320:input_model","SourceOutputPortId":"-293:data"},{"DestinationInputPortId":"-438:input_1","SourceOutputPortId":"-425:data"},{"DestinationInputPortId":"-443:input_1","SourceOutputPortId":"-429:data"},{"DestinationInputPortId":"-320:training_data","SourceOutputPortId":"-436:data_1"},{"DestinationInputPortId":"-320:validation_data","SourceOutputPortId":"-436:data_2"},{"DestinationInputPortId":"-333:input_data","SourceOutputPortId":"-438:data"},{"DestinationInputPortId":"-214:input_3","SourceOutputPortId":"-443:data"},{"DestinationInputPortId":"-341:input_data","SourceOutputPortId":"-443:data"}],"ModuleNodes":[{"Id":"-214","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n\n test_data = input_2.read_pickle()\n pred_label = input_1.read_pickle()\n pred_result = pred_label.reshape(pred_label.shape[0]) \n dt = input_3.read_df()['date'][-1*len(pred_result):]\n pred_df = pd.Series(pred_result, index=dt)\n ds = DataSource.write_df(pred_df)\n \n return Outputs(data_1=ds)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-214"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-214"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-214"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-214","OutputType":null},{"Name":"data_2","NodeId":"-214","OutputType":null},{"Name":"data_3","NodeId":"-214","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"模型预测结果输出","CommentCollapsed":false},{"Id":"-210","ModuleId":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","ModuleParameters":[{"Name":"shape","Value":"50,5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dtype","Value":"float32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sparse","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-210"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-210","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-218","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Ones","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-218"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-218","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-316","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-316"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-316"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-316","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-320","ModuleId":"BigQuantSpace.dl_model_train.dl_model_train-v1","ModuleParameters":[{"Name":"optimizer","Value":"Adam","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_optimizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"loss","Value":"binary_crossentropy","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_loss","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"metrics","Value":"accuracy","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_size","Value":"2048","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"epochs","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"1:输出进度条记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-320"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_data","NodeId":"-320"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"validation_data","NodeId":"-320"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-320","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-332","ModuleId":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","ModuleParameters":[{"Name":"batch_size","Value":"10240","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"2:每个epoch输出一行记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trained_model","NodeId":"-332"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-332"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-332","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2295","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"(close_0/close_1-1)*10\n(high_0/high_1-1)*10\n(low_0/low_1-1)*10\n(open_0/open_1-1)*10\n(volume_0/volume_1-1)*10","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-2295"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2295","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-259","ModuleId":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","ModuleParameters":[{"Name":"units","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-259"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-259","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-14806","ModuleId":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","ModuleParameters":[{"Name":"units","Value":"32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-14806"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-14806","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-14834","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.4","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-14834"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-14834","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":11,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-14841","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.8","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-14841"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-14841","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-403","ModuleId":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","ModuleParameters":[{"Name":"target_shape","Value":"50,5,1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-403"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-403","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-408","ModuleId":"BigQuantSpace.dl_layer_conv2d.dl_layer_conv2d-v1","ModuleParameters":[{"Name":"filters","Value":"32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_size","Value":"3,5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"strides","Value":"1,1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"padding","Value":"valid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_format","Value":"channels_last","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dilation_rate","Value":"1,1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"relu","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-408"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-408","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-446","ModuleId":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","ModuleParameters":[{"Name":"target_shape","Value":"48,32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-446"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-446","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2290","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-2290"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-2290"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2290","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"标注特征连接","CommentCollapsed":false},{"Id":"-620","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-07-02","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2017-10-30","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"600009.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-620"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-620","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-692","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-692"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-692"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-692","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":26,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-281","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n try:\n prediction = context.prediction[data.current_dt.strftime('%Y-%m-%d')]\n except KeyError as e:\n return\n \n instrument = context.instruments[0]\n sid = context.symbol(instrument)\n cur_position = context.portfolio.positions[sid].amount\n \n # 交易逻辑\n if prediction > 0.5 and cur_position == 0:\n context.order_target_percent(context.symbol(instrument), 1)\n print(data.current_dt, '买入!')\n \n elif prediction < 0.5 and cur_position > 0:\n context.order_target_percent(context.symbol(instrument), 0)\n print(data.current_dt, '卖出!')\n ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-281"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-281"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-281","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-333","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"50","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-333"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-333"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-333","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":25,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-341","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"50","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-341"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-341"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-341","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":27,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-289","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -10) / close -1>0,1,0)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-289"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-289","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-300","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-300"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-300"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-300","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-307","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-307"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-307"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-307","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-322","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-02-11","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2019-09-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"600009.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-322"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-322","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-293","ModuleId":"BigQuantSpace.dl_model_init.dl_model_init-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-293"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"outputs","NodeId":"-293"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-293","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-425","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-425"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-425"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-425","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"去掉为nan的数据","CommentCollapsed":true},{"Id":"-429","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-429"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-429"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-429","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":29,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-436","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_2.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'])\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-436"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-436"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-436"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-436","OutputType":null},{"Name":"data_2","NodeId":"-436","OutputType":null},{"Name":"data_3","NodeId":"-436","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":30,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-438","ModuleId":"BigQuantSpace.standardlize.standardlize-v8","ModuleParameters":[{"Name":"columns_input","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-438"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-438"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-438","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-443","ModuleId":"BigQuantSpace.standardlize.standardlize-v8","ModuleParameters":[{"Name":"columns_input","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-443"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-443"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-443","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-214' Position='1012,714,200,200'/><NodePosition Node='-210' Position='287,-288,200,200'/><NodePosition Node='-218' Position='277,69,200,200'/><NodePosition Node='-316' Position='1245,-45,200,200'/><NodePosition Node='-320' Position='632,540,200,200'/><NodePosition Node='-332' Position='816,622,200,200'/><NodePosition Node='-2295' Position='1006,-264,200,200'/><NodePosition Node='-259' Position='281,387,200,200'/><NodePosition Node='-14806' Position='279,211,200,200'/><NodePosition Node='-14834' Position='279,146,200,200'/><NodePosition Node='-14841' Position='282,301,200,200'/><NodePosition Node='-403' Position='279,-194,200,200'/><NodePosition Node='-408' Position='280,-107,200,200'/><NodePosition Node='-446' Position='278,-23,200,200'/><NodePosition Node='-2290' Position='739,86,200,200'/><NodePosition Node='-620' Position='718,-171,200,200'/><NodePosition Node='-692' Position='1251,39,200,200'/><NodePosition Node='-281' Position='1216,807,200,200'/><NodePosition Node='-333' Position='749,342,200,200'/><NodePosition Node='-341' Position='1266,276,200,200'/><NodePosition Node='-289' Position='589,-39,200,200'/><NodePosition Node='-300' Position='896,-83,200,200'/><NodePosition Node='-307' Position='892,-11,200,200'/><NodePosition Node='-322' Position='1237,-137,200,200'/><NodePosition Node='-293' Position='465,464,200,200'/><NodePosition Node='-425' Position='743,185,200,200'/><NodePosition Node='-429' Position='1265,124,200,200'/><NodePosition Node='-436' Position='752,421,200,200'/><NodePosition Node='-438' Position='756,257,200,200'/><NodePosition Node='-443' Position='1260,202,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2020-12-18 11:20:46.544151] INFO: moduleinvoker: dl_layer_input.v1 运行完成[2.314779s].
[2020-12-18 11:20:46.841195] INFO: moduleinvoker: dl_layer_reshape.v1 运行完成[0.287949s].
[2020-12-18 11:20:48.888344] INFO: moduleinvoker: dl_layer_conv2d.v1 运行完成[2.044115s].
[2020-12-18 11:20:48.902240] INFO: moduleinvoker: dl_layer_reshape.v1 运行完成[0.011662s].
[2020-12-18 11:20:49.077801] INFO: moduleinvoker: dl_layer_lstm.v1 运行完成[0.172813s].
[2020-12-18 11:20:49.105346] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.024793s].
[2020-12-18 11:20:49.122537] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.014702s].
[2020-12-18 11:20:49.149414] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.02511s].
[2020-12-18 11:20:49.164296] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.01324s].
[2020-12-18 11:20:49.192594] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-18 11:20:49.208524] INFO: moduleinvoker: 命中缓存
[2020-12-18 11:20:49.209386] INFO: moduleinvoker: cached.v3 运行完成[0.016793s].
[2020-12-18 11:20:49.210703] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.04428s].
[2020-12-18 11:20:49.212803] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-12-18 11:20:49.219056] INFO: moduleinvoker: 命中缓存
[2020-12-18 11:20:49.219873] INFO: moduleinvoker: input_features.v1 运行完成[0.007068s].
[2020-12-18 11:20:49.221956] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-12-18 11:20:49.267509] INFO: moduleinvoker: instruments.v2 运行完成[0.045546s].
[2020-12-18 11:20:49.269883] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-12-18 11:20:51.237369] INFO: 自动标注(股票): 加载历史数据: 568 行
[2020-12-18 11:20:51.238648] INFO: 自动标注(股票): 开始标注 ..
[2020-12-18 11:20:51.362097] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[2.092189s].
[2020-12-18 11:20:51.370193] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-12-18 11:20:52.600394] INFO: 基础特征抽取: 年份 2015, 特征行数=185
[2020-12-18 11:20:53.505103] INFO: 基础特征抽取: 年份 2016, 特征行数=244
[2020-12-18 11:20:54.845401] INFO: 基础特征抽取: 年份 2017, 特征行数=200
[2020-12-18 11:20:54.936916] INFO: 基础特征抽取: 总行数: 629
[2020-12-18 11:20:54.940900] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[3.570696s].
[2020-12-18 11:20:54.943979] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-12-18 11:20:55.004791] INFO: derived_feature_extractor: 提取完成 (close_0/close_1-1)*10, 0.001s
[2020-12-18 11:20:55.007284] INFO: derived_feature_extractor: 提取完成 (high_0/high_1-1)*10, 0.001s
[2020-12-18 11:20:55.009367] INFO: derived_feature_extractor: 提取完成 (low_0/low_1-1)*10, 0.001s
[2020-12-18 11:20:55.011417] INFO: derived_feature_extractor: 提取完成 (open_0/open_1-1)*10, 0.001s
[2020-12-18 11:20:55.013568] INFO: derived_feature_extractor: 提取完成 (volume_0/volume_1-1)*10, 0.001s
[2020-12-18 11:20:55.050565] INFO: derived_feature_extractor: /y_2015, 185
[2020-12-18 11:20:55.079600] INFO: derived_feature_extractor: /y_2016, 244
[2020-12-18 11:20:55.108510] INFO: derived_feature_extractor: /y_2017, 200
[2020-12-18 11:20:55.220688] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.276692s].
[2020-12-18 11:20:55.223667] INFO: moduleinvoker: join.v3 开始运行..
[2020-12-18 11:20:55.308414] INFO: join: /y_2015, 行数=124/185, 耗时=0.026592s
[2020-12-18 11:20:55.335886] INFO: join: /y_2016, 行数=244/244, 耗时=0.026289s
[2020-12-18 11:20:55.362516] INFO: join: /y_2017, 行数=200/200, 耗时=0.025644s
[2020-12-18 11:20:55.465671] INFO: join: 最终行数: 568
[2020-12-18 11:20:55.471973] INFO: moduleinvoker: join.v3 运行完成[0.248297s].
[2020-12-18 11:20:55.474570] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-12-18 11:20:55.535055] INFO: dropnan: /y_2015, 124/124
[2020-12-18 11:20:55.560681] INFO: dropnan: /y_2016, 244/244
[2020-12-18 11:20:55.585851] INFO: dropnan: /y_2017, 200/200
[2020-12-18 11:20:55.676277] INFO: dropnan: 行数: 568/568
[2020-12-18 11:20:55.679773] INFO: moduleinvoker: dropnan.v2 运行完成[0.205192s].
[2020-12-18 11:20:55.682159] INFO: moduleinvoker: standardlize.v8 开始运行..
[2020-12-18 11:20:56.803589] INFO: moduleinvoker: standardlize.v8 运行完成[1.12141s].
[2020-12-18 11:20:56.810035] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2020-12-18 11:20:57.099374] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.289321s].
[2020-12-18 11:20:57.102722] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-18 11:20:57.280102] INFO: moduleinvoker: cached.v3 运行完成[0.17735s].
[2020-12-18 11:20:57.284476] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2020-12-18 11:20:57.499252] INFO: device_manager: 本次操作不使用GPU
[2020-12-18 11:20:57.939906] INFO: dl_model_train: 准备训练,训练样本个数:426,迭代次数:10
[2020-12-18 11:21:17.051738] INFO: dl_model_train: 训练结束,耗时:19.11s
[2020-12-18 11:21:17.142336] INFO: moduleinvoker: dl_model_train.v1 运行完成[19.857846s].
[2020-12-18 11:21:17.144153] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-12-18 11:21:17.171651] INFO: moduleinvoker: instruments.v2 运行完成[0.027491s].
[2020-12-18 11:21:17.176446] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-12-18 11:21:17.937244] INFO: 基础特征抽取: 年份 2014, 特征行数=35
[2020-12-18 11:21:18.670479] INFO: 基础特征抽取: 年份 2015, 特征行数=244
[2020-12-18 11:21:19.473496] INFO: 基础特征抽取: 年份 2016, 特征行数=244
[2020-12-18 11:21:20.350055] INFO: 基础特征抽取: 年份 2017, 特征行数=244
[2020-12-18 11:21:21.228959] INFO: 基础特征抽取: 年份 2018, 特征行数=243
[2020-12-18 11:21:22.138718] INFO: 基础特征抽取: 年份 2019, 特征行数=163
[2020-12-18 11:21:22.252207] INFO: 基础特征抽取: 总行数: 1173
[2020-12-18 11:21:22.255379] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[5.078924s].
[2020-12-18 11:21:22.257053] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-12-18 11:21:22.399845] INFO: derived_feature_extractor: 提取完成 (close_0/close_1-1)*10, 0.001s
[2020-12-18 11:21:22.401818] INFO: derived_feature_extractor: 提取完成 (high_0/high_1-1)*10, 0.001s
[2020-12-18 11:21:22.403551] INFO: derived_feature_extractor: 提取完成 (low_0/low_1-1)*10, 0.001s
[2020-12-18 11:21:22.405106] INFO: derived_feature_extractor: 提取完成 (open_0/open_1-1)*10, 0.001s
[2020-12-18 11:21:22.406620] INFO: derived_feature_extractor: 提取完成 (volume_0/volume_1-1)*10, 0.001s
[2020-12-18 11:21:22.466193] INFO: derived_feature_extractor: /y_2014, 35
[2020-12-18 11:21:22.517016] INFO: derived_feature_extractor: /y_2015, 244
[2020-12-18 11:21:22.558805] INFO: derived_feature_extractor: /y_2016, 244
[2020-12-18 11:21:22.588205] INFO: derived_feature_extractor: /y_2017, 244
[2020-12-18 11:21:22.617554] INFO: derived_feature_extractor: /y_2018, 243
[2020-12-18 11:21:22.659175] INFO: derived_feature_extractor: /y_2019, 163
[2020-12-18 11:21:22.852689] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.595617s].
[2020-12-18 11:21:22.854528] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-12-18 11:21:22.958154] INFO: dropnan: /y_2014, 35/35
[2020-12-18 11:21:22.994657] INFO: dropnan: /y_2015, 244/244
[2020-12-18 11:21:23.027615] INFO: dropnan: /y_2016, 244/244
[2020-12-18 11:21:23.059980] INFO: dropnan: /y_2017, 244/244
[2020-12-18 11:21:23.098134] INFO: dropnan: /y_2018, 243/243
[2020-12-18 11:21:23.129002] INFO: dropnan: /y_2019, 163/163
[2020-12-18 11:21:23.238905] INFO: dropnan: 行数: 1173/1173
[2020-12-18 11:21:23.242143] INFO: moduleinvoker: dropnan.v2 运行完成[0.387605s].
[2020-12-18 11:21:23.243620] INFO: moduleinvoker: standardlize.v8 开始运行..
[2020-12-18 11:21:25.522192] INFO: moduleinvoker: standardlize.v8 运行完成[2.278545s].
[2020-12-18 11:21:25.527698] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2020-12-18 11:21:26.090100] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.562385s].
[2020-12-18 11:21:26.092757] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2020-12-18 11:21:26.254566] INFO: device_manager: 本次操作不使用GPU
[2020-12-18 11:21:27.000282] INFO: moduleinvoker: dl_model_predict.v1 运行完成[0.907503s].
[2020-12-18 11:21:27.004037] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-18 11:21:27.085309] INFO: moduleinvoker: cached.v3 运行完成[0.081262s].
[2020-12-18 11:21:28.289678] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-12-18 11:21:28.293325] INFO: backtest: biglearning backtest:V8.4.2
[2020-12-18 11:21:28.294373] INFO: backtest: product_type:stock by specified
[2020-12-18 11:21:28.621043] INFO: moduleinvoker: cached.v2 开始运行..
[2020-12-18 11:21:39.546193] INFO: backtest: 读取股票行情完成:414680
[2020-12-18 11:21:40.408465] INFO: moduleinvoker: cached.v2 运行完成[11.787411s].
[2020-12-18 11:21:40.555421] INFO: algo: TradingAlgorithm V1.6.9
[2020-12-18 11:21:40.801896] INFO: algo: trading transform...
[2020-12-18 11:21:41.088548] INFO: algo: handle_splits get splits [dt:2015-08-20 00:00:00+00:00] [asset:Equity(3 [600009.SHA]), ratio:0.9882234930992126]
[2020-12-18 11:21:41.089671] INFO: Position: position stock handle split[sid:3, orig_amount:48900, new_amount:49482.0, orig_cost:20.430083285176046, new_cost:20.1895, ratio:0.9882234930992126, last_sale_price:29.369998931884766]
[2020-12-18 11:21:41.090560] INFO: Position: after split: PositionStock(asset:Equity(3 [600009.SHA]), amount:49482.0, cost_basis:20.1895, last_sale_price:29.71999740600586)
[2020-12-18 11:21:41.091366] INFO: Position: returning cash: 21.5504
[2020-12-18 11:21:41.567291] INFO: algo: handle_splits get splits [dt:2016-08-18 00:00:00+00:00] [asset:Equity(3 [600009.SHA]), ratio:0.9852133393287659]
[2020-12-18 11:21:41.568287] INFO: Position: position stock handle split[sid:3, orig_amount:49482.0, new_amount:50224.0, orig_cost:20.1895, new_cost:19.891, ratio:0.9852133393287659, last_sale_price:28.65000343322754]
[2020-12-18 11:21:41.569152] INFO: Position: after split: PositionStock(asset:Equity(3 [600009.SHA]), amount:50224.0, cost_basis:19.891, last_sale_price:29.079999923706055)
[2020-12-18 11:21:41.569945] INFO: Position: returning cash: 18.7637
[2020-12-18 11:21:42.060829] INFO: algo: handle_splits get splits [dt:2017-08-24 00:00:00+00:00] [asset:Equity(3 [600009.SHA]), ratio:0.9882099032402039]
[2020-12-18 11:21:42.061893] INFO: Position: position stock handle split[sid:3, orig_amount:50224.0, new_amount:50823.0, orig_cost:19.891, new_cost:19.6565, ratio:0.9882099032402039, last_sale_price:36.8799934387207]
[2020-12-18 11:21:42.062779] INFO: Position: after split: PositionStock(asset:Equity(3 [600009.SHA]), amount:50823.0, cost_basis:19.6565, last_sale_price:37.31999969482422)
[2020-12-18 11:21:42.063585] INFO: Position: returning cash: 7.7658
[2020-12-18 11:21:42.557516] INFO: algo: handle_splits get splits [dt:2018-08-23 00:00:00+00:00] [asset:Equity(3 [600009.SHA]), ratio:0.9900703430175781]
[2020-12-18 11:21:42.558550] INFO: Position: position stock handle split[sid:3, orig_amount:50823.0, new_amount:51332.0, orig_cost:19.6565, new_cost:19.4613, ratio:0.9900703430175781, last_sale_price:57.83000946044922]
[2020-12-18 11:21:42.559429] INFO: Position: after split: PositionStock(asset:Equity(3 [600009.SHA]), amount:51332.0, cost_basis:19.4613, last_sale_price:58.40999984741211)
[2020-12-18 11:21:42.560236] INFO: Position: returning cash: 41.4216
[2020-12-18 11:21:43.055547] INFO: algo: handle_splits get splits [dt:2019-08-22 00:00:00+00:00] [asset:Equity(3 [600009.SHA]), ratio:0.9922354221343994]
[2020-12-18 11:21:43.056739] INFO: Position: position stock handle split[sid:3, orig_amount:51332.0, new_amount:51733.0, orig_cost:19.4613, new_cost:19.3102, ratio:0.9922354221343994, last_sale_price:84.34001159667969]
[2020-12-18 11:21:43.057626] INFO: Position: after split: PositionStock(asset:Equity(3 [600009.SHA]), amount:51733.0, cost_basis:19.3102, last_sale_price:85.0)
[2020-12-18 11:21:43.058437] INFO: Position: returning cash: 58.2171
[2020-12-18 11:21:43.073748] INFO: Performance: Simulated 1111 trading days out of 1111.
[2020-12-18 11:21:43.074634] INFO: Performance: first open: 2015-02-11 09:30:00+00:00
[2020-12-18 11:21:43.075456] INFO: Performance: last close: 2019-08-30 15:00:00+00:00
[2020-12-18 11:21:46.260567] INFO: moduleinvoker: backtest.v8 运行完成[17.970884s].
[2020-12-18 11:21:46.261822] INFO: moduleinvoker: trade.v4 运行完成[19.17281s].
[2020-12-18 11:20:49.126469] WARNING tensorflow: Large dropout rate: 0.8 (>0.5). In TensorFlow 2.x, dropout() uses dropout rate instead of keep_prob. Please ensure that this is intended.
[2020-12-18 11:20:57.829795] WARNING tensorflow: Large dropout rate: 0.8 (>0.5). In TensorFlow 2.x, dropout() uses dropout rate instead of keep_prob. Please ensure that this is intended.
Train on 426 samples, validate on 142 samples
Epoch 1/10
[2020-12-18 11:20:58.565044] WARNING tensorflow: Large dropout rate: 0.8 (>0.5). In TensorFlow 2.x, dropout() uses dropout rate instead of keep_prob. Please ensure that this is intended.
[2020-12-18 11:21:00.117847] WARNING tensorflow: Large dropout rate: 0.8 (>0.5). In TensorFlow 2.x, dropout() uses dropout rate instead of keep_prob. Please ensure that this is intended.
426/426 [==============================] - 5s 13ms/sample - loss: 0.9390 - accuracy: 0.5164 - val_loss: 0.6737 - val_accuracy: 0.5986
Epoch 2/10
[2020-12-18 11:21:16.327412] WARNING tensorflow: Method (on_train_batch_end) is slow compared to the batch update (12.360096). Check your callbacks.
426/426 [==============================] - 13s 30ms/sample - loss: 1.0467 - accuracy: 0.4671 - val_loss: 0.6741 - val_accuracy: 0.5986
Epoch 3/10
426/426 [==============================] - 0s 179us/sample - loss: 0.9981 - accuracy: 0.4930 - val_loss: 0.6745 - val_accuracy: 0.5986
Epoch 4/10
426/426 [==============================] - 0s 174us/sample - loss: 0.9390 - accuracy: 0.5117 - val_loss: 0.6746 - val_accuracy: 0.5986
Epoch 5/10
426/426 [==============================] - 0s 179us/sample - loss: 1.0413 - accuracy: 0.4789 - val_loss: 0.6745 - val_accuracy: 0.5986
Epoch 6/10
426/426 [==============================] - 0s 170us/sample - loss: 0.8943 - accuracy: 0.5047 - val_loss: 0.6741 - val_accuracy: 0.5986
Epoch 7/10
426/426 [==============================] - 0s 177us/sample - loss: 0.8734 - accuracy: 0.5399 - val_loss: 0.6739 - val_accuracy: 0.5986
Epoch 8/10
426/426 [==============================] - 0s 169us/sample - loss: 0.9566 - accuracy: 0.5141 - val_loss: 0.6738 - val_accuracy: 0.5986
Epoch 9/10
426/426 [==============================] - 0s 170us/sample - loss: 0.9005 - accuracy: 0.5352 - val_loss: 0.6737 - val_accuracy: 0.5986
Epoch 10/10
426/426 [==============================] - 0s 175us/sample - loss: 0.9195 - accuracy: 0.5023 - val_loss: 0.6736 - val_accuracy: 0.5986
[2020-12-18 11:21:26.608326] WARNING tensorflow: Large dropout rate: 0.8 (>0.5). In TensorFlow 2.x, dropout() uses dropout rate instead of keep_prob. Please ensure that this is intended.
1173/1173 - 0s
DataSource(8a6dd21033de43afaa125d9a3b75db18T, v3)
2015-02-11 15:00:00+00:00 买入!
- 收益率334.9%
- 年化收益率39.57%
- 基准收益率11.52%
- 阿尔法0.35
- 贝塔0.96
- 夏普比率0.98
- 胜率1.0
- 盈亏比0.0
- 收益波动率38.83%
- 信息比率0.07
- 最大回撤40.62%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-9332aa1593a94b09a9a0650dc9124aeb"}/bigcharts-data-end