重启开发环境
更新时间:2022-12-20 14:20
模型板块包含了AI算法模型,多因子模型等一些研究内容。
更新时间:2022-12-06 14:42
更新时间:2022-11-20 03:34
Constructing Long-Short Stock Portfolio with A New Listwise Learn-to-Rank Algorithm
作者:Xin Zhang, et al.
出处:Quantitative Finance, 2021-07
摘要:随着机器学习的快速发展,因子策略在行业中得到越来越广泛的应用。在算法中输入多因子可以进行横截面收益预测,并进一步用于构建多空组合。大量现有研究使用排序学习法来预测股票排名,基于此,作者提出了一个新的列表排序学习损失函数来进一步强调排名的头部和尾部。本文的损失函数基于多空策略,具有内在的移位不变性,是对ListM
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
如何修改HFTrade高频交易模块里的成交率限制volume_limit
\
更新时间:2022-11-09 01:23
更新时间:2022-11-09 01:23
本集合里将分享平台开发者们对DeepAlpha系列的实践研究报告
\
更新时间:2022-11-08 08:26
\
更新时间:2022-11-03 08:32
G-Resarch作为ICML 2022的钻石赞助商,其研究人员和工程师参加了今年在美国巴尔的摩举行的会议。研究人员收集了他们最喜欢的2022年ICML论文并推荐给大家。
首先是来自机器学习工程师Casey Haaland的推荐,我们可以发现,机器学习工程师关注的论文更偏模型的结构及训练方法优化。
**Fast Convex Optimizat
更新时间:2022-10-11 02:31
Renaissance Technologies文艺复兴科技公司交易策略揭秘记录!该短片中详细介绍了文艺复兴科技公司多年来如何开发各种交易策略,从早期的均值回归到利用内核方法等等。
https://www.bilibili.com/video/BV1ae4y1f7Em
\
更新时间:2022-10-10 12:50
参考 https://wesmckinney.com/book/ 编写 Python For Quants - 用于量化投资的Python
更新时间:2022-10-10 01:02
更新时间:2022-10-09 11:05
我通达信里面有买入条件筛选,有买入条件筛选。请问如何讲这些条件放到bigquant呢?具体放在那里呢?
更新时间:2022-09-21 12:54
\
更新时间:2022-09-18 13:23
\
更新时间:2022-09-01 13:17
揭秘微软亚研院 AI 量化投资研究,展望行业未来发展六大趋势
微软亚研院2017年以来共发表12篇AI量化投资学术研究,其中选股主题超过半数,其他涉及风险模型、算法交易、数据增强、时间序列预测、基础架构等话题。这些研究的突出特点是前沿和务实,具有较高参考价值。前沿是指使用的AI技术,大量运用近年来热门的图神经网络、注意力机制,并灵活应用最优传输、自步学习、知识蒸馏、解耦表征等工具;务实是指解决的具体问题,如“AI模型如何应对市场规律变化”,“如何引导模型学习罕见本”,“如何充分挖掘事件、舆情蕴藏的信息”等,这些都是业界实践中会遇到、接地气的问题。我们透过微软AI量化研究
更新时间:2022-08-31 09:47
更新时间:2022-08-31 09:37
文献来源:Demiguel V, Gil-Bazo J, Nogales F J, et al. Can Machine Learning Help to Select Portfolios of Mutual Funds?[J]. Social Science Electronic Publishing, 2021.
推荐原因:众所周知,事先确定未来表现优异的共同基金是一项困难的任务。本文基于大量投资者容易获得的基金特征数据,利用机器学习方法训练提升其预测能力。研究发现,利用1980年至2018年期间美国股票型基金的数据,基于机器学习方法构建的基金组合,经风险调整
更新时间:2022-08-31 09:22
文献来源:Byrd, David, Sourabh Bajaj, and Tucker Hybinette Balch. "Fund Asset Inference Using Machine Learning Methods: What’s in That Portfolio?." The Journal of Financial Data Science 1.3 (2019): 98-107.
推荐原因:
 99-112.
推荐原因:规模溢价自被发现已有近四十年,然而规模因子的alpha一直很微弱,但是当控制质量因子(quality-versus-junk)暴露时,因子似乎又恢复了活力。本文发现,在美国市场,规模因子对质量因子回归后呈现出非常显著的alpha,然而超额收益主要由质量因子的空头端驱动,
更新时间:2022-08-31 08:46
文献来源:Leippold, M., Wang, Q. & Zhou, W. (2021). Machine-Learning in the Chinese Stock Market. Journal of Financial Economics.
推荐原因:随着机器学习在金融和经济领域的应用迅速兴起,越来越多的学者利用机器学习工具研究股票的截面和时间序列预测。而中国股票市场历史较短,制度依然处于不断完善的阶段,有着自身的特殊性。本文根据中国市场的特征构建了一个全面的股票收益预测因子集,并利用几大流行的机器学习算法进行实证分析。经过CSPA条件预测能力检验,作者发现神经
更新时间:2022-08-31 08:45
更新时间:2022-08-31 08:06