因子分析框架-信号类因子

{{membership}}

[https://bigquant.com/codeshare/bf0976b8-c68c-474a-a9d0-9686bbaed72f](https://bigquant.com/codeshare/bf0976b8-c68c-474a-a9d0-9686bbaed

由small_q创建,最终由small_q更新于

因子分析框架-离散因子

{{membership}}

[https://bigquant.com/codeshare/837517eb-68a0-411f-beb8-bc991c8f69c1](https://bigquant.com/codeshare/837517eb-68a0-411f-beb8-bc991c8f6

由small_q创建,最终由small_q更新于

实时汇率API查询接口接入方法:支持逐笔报价、批量订阅、历史日K线、周K、月K

在进行量化回测时,实时数据接口、实时汇率API、汇率查询接口需要支持逐笔报价、批量订阅、以及获取历史日K线数据、周K线数据、月K线数据等功能,这些功能对于编写有效的交易策略和分析市场数据至关重要。

一般来说,在进行量化回测时,我们可以选择使用专业的量化交易平台或软件,这些平台通常会提供相应的实时数

由bqw3t74w创建,最终由bqw3t74w更新于

因子平台/BigAlpha

因子研究

在金融投资领域中,因子研究是量化投资的重要组成部分。这是一种研究和分析股票、债券等金融资产的性能和风险的关键手段,以揭示影响投资回报的基本因素。

因子研究的核心价值在于,它可以揭示那些对投资回报产生持续影响的变量,如市值、质量、动量、低波动性、收益率等。这些因子在历史上已

由jliang创建,最终由small_q更新于

因子分析框架-自动调整因子方向

{{membership}}

[https://bigquant.com/codeshare/275c0eb4-7402-4978-b103-18b6f5de15d7](https://bigquant.com/codeshare/275c0eb4-7402-4978-b103-18b6f5de1

由small_q创建,最终由small_q更新于

因子分析框架

{{membership}}

[https://bigquant.com/codeshare/a7f6fb4b-fc0e-4364-a6fa-de10e828c02b](https://bigquant.com/codeshare/a7f6fb4b-fc0e-4364-a6fa-de10e828c

由small_q创建,最终由small_q更新于

BigCharts - 量化数据可视化探索和分析

入门介绍

BigCharts是专业的金融市场和量化投资数据可视化探索与分析工具,致力于为用户提供高效、易用、可定制的数据可视化解决方案,提升用户在数据探索、分析和决策过程中的效率与准确性,成为量化投资者和金融分析师的得力助手。

适合人群

快捷易上手,适合所

由jliang创建,最终由ydong更新于

机器学习:20-DNN-滚动训练

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/e7bb60a5-a6e1-4310-9e6a-e4b742fb0f1

由small_q创建,最终由small_q更新于

机器学习:19-滚动训练-XGBoost

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

**

由small_q创建,最终由small_q更新于

机器学习:18-滚动训练-线性回归

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/66c560a3-335b-407c-aa2f-7053322141f

由small_q创建,最终由small_q更新于

机器学习:17-LSTM

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

**策略源码

由small_q创建,最终由small_q更新于

机器学习:16-CNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/ccbddd56-eddd-4a7f-95e2-88e8a0432a3

由small_q创建,最终由small_q更新于

机器学习:15-DNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

**策略

由small_q创建,最终由small_q更新于

机器学习:14-XGBoost

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:



\

由small_q创建,最终由small_q更新于

机器学习:13-AdaBoost

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:



**策略源

由small_q创建,最终由small_q更新于

机器学习:12-随机森林

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

**策略

由small_q创建,最终由small_q更新于

机器学习:11-感知机

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==

回测图:

\

**策略源码

由small_q创建,最终由small_q更新于

机器学习:10-朴素贝叶斯

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

**策略

由small_q创建,最终由small_q更新于

机器学习:9-KNN

  • 运行环境:AIStudio 3.0

  • 机器学习:KNN算法

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

![](/wiki/api/attachments.redirect?id=aa129740-493a-4361-871d-1d099144d01

由small_q创建,最终由small_q更新于

机器学习:8-SVM

  • 运行环境:AIStudio 3.0
  • 机器学习:8-SVM
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

由small_q创建,最终由small_q更新于

分页:第1页第2页第3页第4页第5页第6页第7页第8页第9页第327页