{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-274:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-274:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-281:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-1856:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-6060:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-288:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-6060:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-531:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-281:input_data","from_node_id":"-274:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-281:data"},{"to_node_id":"-295:input_data","from_node_id":"-288:data"},{"to_node_id":"-1160:input_data","from_node_id":"-295:data"},{"to_node_id":"-1859:input_1","from_node_id":"-1856:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"-1859:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"-531:data"},{"to_node_id":"-86:input_data","from_node_id":"-1160:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2014-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2019-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -10) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_avg_amount_8/rank_avg_amount_16\n\n\n((high_0-low_0)/2)\n#(((high_0-low_0)/2)/low_1)\n(high_1-low_1)/low_0\n(high_2-low_2)/high_0\n\n(2.5*(high_1-low_1)/5)\nrank_avg_amount_0/rank_avg_amount_5/rank_avg_amount_10/rank_avg_amount_15\n((high_0-low_0)/2)/(2*(high_1-low_1)/5)\ncond3=sum(price_limit_status_0==3,20)\n#当天是否涨停,涨停为1,非涨停为0\nisZhangtToday=where((return_0>1.09)&(close_0==high_0),1,0)\n#20天内有涨停,isHasZhangt20值为1则是20天内有涨停\nisHasZhangt20=where(ts_max(isZhangtToday,20)==1,1,0)\n\n#前一日收盘价在前一日最高-最低价的2/5以下,1为是\nls1=where((close_1-low_1)/low_1<(0.4*(high_1-low_1)/low_1),1,0)\n\n#当日收盘价在当日最高-最低价的1/2以上,1为是\nls2=where((close_0-low_0)/low_0>(0.5*(high_0-low_0)/low_0),1,0)\n\n#dapangu=where(market_cap_0>6000000000,1,0)\n\nmy=where((isHasZhangt20==1)&(ls1==1)&(ls2==1),1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2025-7-28","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-274","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-274"},{"name":"features","node_id":"-274"}],"output_ports":[{"name":"data","node_id":"-274"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-6060","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1]\n #[1/stock_count for k in range(stock_count)]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.5\n context.options['hold_days'] = 20\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < 6 # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n if not is_staging:\n stock_count = 1\n context.stock_weights = [1]\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n if is_staging:\n stock_count = 4\n context.stock_weights = [1,1,1,1]\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0.025","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"200000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-6060"},{"name":"options_data","node_id":"-6060"},{"name":"history_ds","node_id":"-6060"},{"name":"benchmark_ds","node_id":"-6060"},{"name":"trading_calendar","node_id":"-6060"}],"output_ports":[{"name":"raw_perf","node_id":"-6060"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1856","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-1856"}],"output_ports":[{"name":"data_1","node_id":"-1856"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1859","module_id":"BigQuantSpace.filter_delist_stock.filter_delist_stock-v6","parameters":[],"input_ports":[{"name":"input_1","node_id":"-1859"}],"output_ports":[{"name":"data_1","node_id":"-1859"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-531","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"my==1","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-531"}],"output_ports":[{"name":"data","node_id":"-531"},{"name":"left_data","node_id":"-531"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-1160","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1160"}],"output_ports":[{"name":"data","node_id":"-1160"},{"name":"left_data","node_id":"-1160"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='212,-86,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='67,196,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,14.037590026855469,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='601,696,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='231,358,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='907,772,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1250,-18,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='394,567,200,200'/><node_position Node='-86' Position='1091,607,200,200'/><node_position Node='-274' Position='381,186,200,200'/><node_position Node='-281' Position='385,278,200,200'/><node_position Node='-288' Position='1078,234,200,200'/><node_position Node='-295' Position='1079,342,200,200'/><node_position Node='-6060' Position='992,893,200,200'/><node_position Node='-1856' Position='280,428,200,200'/><node_position Node='-1859' Position='334,499,200,200'/><node_position Node='-531' Position='467,625,200,200'/><node_position Node='-1160' Position='1108,490,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2025-08-19 09:52:41.241829] INFO: moduleinvoker: instruments.v2 开始运行..
[2025-08-19 09:52:41.283476] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:41.286794] INFO: moduleinvoker: instruments.v2 运行完成[0.044991s].
[2025-08-19 09:52:41.319933] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2025-08-19 09:52:41.356762] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:41.360134] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.0402s].
[2025-08-19 09:52:41.387733] INFO: moduleinvoker: input_features.v1 开始运行..
[2025-08-19 09:52:41.435540] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:41.439352] INFO: moduleinvoker: input_features.v1 运行完成[0.051631s].
[2025-08-19 09:52:41.531628] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2025-08-19 09:52:41.559172] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:41.562082] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.03048s].
[2025-08-19 09:52:41.593192] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2025-08-19 09:52:41.627336] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:41.630803] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.037626s].
[2025-08-19 09:52:41.684416] INFO: moduleinvoker: join.v3 开始运行..
[2025-08-19 09:52:41.707137] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:41.716143] INFO: moduleinvoker: join.v3 运行完成[0.031747s].
[2025-08-19 09:52:41.779776] INFO: moduleinvoker: filtet_st_stock.v7 开始运行..
[2025-08-19 09:52:41.840397] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:41.843803] INFO: moduleinvoker: filtet_st_stock.v7 运行完成[0.064039s].
[2025-08-19 09:52:41.912117] INFO: moduleinvoker: filter_delist_stock.v6 开始运行..
[2025-08-19 09:52:41.934251] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:41.937595] INFO: moduleinvoker: filter_delist_stock.v6 运行完成[0.0255s].
[2025-08-19 09:52:42.064390] INFO: moduleinvoker: dropnan.v1 开始运行..
[2025-08-19 09:52:42.098299] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:42.103204] INFO: moduleinvoker: dropnan.v1 运行完成[0.038831s].
[2025-08-19 09:52:42.147483] INFO: moduleinvoker: filter.v3 开始运行..
[2025-08-19 09:52:42.182256] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:42.188332] INFO: moduleinvoker: filter.v3 运行完成[0.040852s].
[2025-08-19 09:52:42.237971] INFO: moduleinvoker: stock_ranker_train.v5 开始运行..
[2025-08-19 09:52:42.275330] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:52:42.595676] INFO: moduleinvoker: stock_ranker_train.v5 运行完成[0.357705s].
[2025-08-19 09:52:42.661115] INFO: moduleinvoker: instruments.v2 开始运行..
[2025-08-19 09:52:42.829239] INFO: moduleinvoker: instruments.v2 运行完成[0.168124s].
[2025-08-19 09:52:42.879535] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2025-08-19 09:52:44.990373] INFO: 基础特征抽取: 年份 2021, 特征行数=203041
[2025-08-19 09:52:50.378752] INFO: 基础特征抽取: 年份 2022, 特征行数=1171038
[2025-08-19 09:52:56.882721] INFO: 基础特征抽取: 年份 2023, 特征行数=1258502
[2025-08-19 09:53:02.391730] INFO: 基础特征抽取: 年份 2024, 特征行数=1293650
[2025-08-19 09:53:06.237448] INFO: 基础特征抽取: 年份 2025, 特征行数=738447
[2025-08-19 09:53:06.645668] INFO: 基础特征抽取: 总行数: 4664678
[2025-08-19 09:53:06.666932] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[23.787402s].
[2025-08-19 09:53:06.734303] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2025-08-19 09:53:26.269174] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.013s
[2025-08-19 09:53:26.284349] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.012s
[2025-08-19 09:53:26.294015] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.007s
[2025-08-19 09:53:26.302894] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.006s
[2025-08-19 09:53:26.324832] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_8/rank_avg_amount_16, 0.011s
[2025-08-19 09:53:26.334920] INFO: derived_feature_extractor: 提取完成 ((high_0-low_0)/2), 0.008s
[2025-08-19 09:53:26.345007] INFO: derived_feature_extractor: 提取完成 (high_1-low_1)/low_0, 0.008s
[2025-08-19 09:53:26.354985] INFO: derived_feature_extractor: 提取完成 (high_2-low_2)/high_0, 0.008s
[2025-08-19 09:53:26.369439] INFO: derived_feature_extractor: 提取完成 (2.5*(high_1-low_1)/5), 0.012s
[2025-08-19 09:53:26.379835] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5/rank_avg_amount_10/rank_avg_amount_15, 0.008s
[2025-08-19 09:53:26.408168] INFO: derived_feature_extractor: 提取完成 ((high_0-low_0)/2)/(2*(high_1-low_1)/5), 0.026s
[2025-08-19 09:53:31.431280] INFO: derived_feature_extractor: 提取完成 cond3=sum(price_limit_status_0==3,20), 5.014s
[2025-08-19 09:53:31.445131] INFO: derived_feature_extractor: 提取完成 isZhangtToday=where((return_0>1.09)&(close_0==high_0),1,0), 0.011s
[2025-08-19 09:53:36.550409] INFO: derived_feature_extractor: 提取完成 isHasZhangt20=where(ts_max(isZhangtToday,20)==1,1,0), 5.103s
[2025-08-19 09:53:36.568936] INFO: derived_feature_extractor: 提取完成 ls1=where((close_1-low_1)/low_1[2025-08-19 09:53:36.614088] INFO: derived_feature_extractor: 提取完成 ls2=where((close_0-low_0)/low_0>(0.5*(high_0-low_0)/low_0),1,0), 0.042s
[2025-08-19 09:53:36.634655] INFO: derived_feature_extractor: 提取完成 my=where((isHasZhangt20==1)&(ls1==1)&(ls2==1),1,0), 0.015s
[2025-08-19 09:53:39.968310] INFO: derived_feature_extractor: /y_2021, 203041
[2025-08-19 09:53:44.683119] INFO: derived_feature_extractor: /y_2022, 1171038
[2025-08-19 09:53:51.162047] INFO: derived_feature_extractor: /y_2023, 1258502
[2025-08-19 09:53:57.925522] INFO: derived_feature_extractor: /y_2024, 1293650
[2025-08-19 09:54:02.616055] INFO: derived_feature_extractor: /y_2025, 738447
[2025-08-19 09:54:04.004856] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[57.270629s].
[2025-08-19 09:54:04.046851] INFO: moduleinvoker: chinaa_stock_filter.v1 开始运行..
[2025-08-19 09:54:08.956467] INFO: A股股票过滤: 过滤 /y_2021, 192450/0/203041
[2025-08-19 09:54:25.285801] INFO: A股股票过滤: 过滤 /y_2022, 1108731/0/1171038
[2025-08-19 09:54:45.052158] INFO: A股股票过滤: 过滤 /y_2023, 1179041/0/1258502
[2025-08-19 09:55:06.927420] INFO: A股股票过滤: 过滤 /y_2024, 1203090/0/1293650
[2025-08-19 09:55:15.958937] INFO: A股股票过滤: 过滤 /y_2025, 681607/0/738447
[2025-08-19 09:55:16.039675] INFO: A股股票过滤: 过滤完成, 4364919 + 0
[2025-08-19 09:55:16.179393] INFO: moduleinvoker: chinaa_stock_filter.v1 运行完成[72.132524s].
[2025-08-19 09:55:16.279536] INFO: moduleinvoker: dropnan.v1 开始运行..
[2025-08-19 09:55:22.293180] INFO: dropnan: /y_2021, 108717/192450
[2025-08-19 09:55:34.538610] INFO: dropnan: /y_2022, 1100957/1108731
[2025-08-19 09:55:41.986074] INFO: dropnan: /y_2023, 1173724/1179041
[2025-08-19 09:55:49.680677] INFO: dropnan: /y_2024, 1200722/1203090
[2025-08-19 09:55:53.586671] INFO: dropnan: /y_2025, 680194/681607
[2025-08-19 09:55:53.928327] INFO: dropnan: 行数: 4264314/4364919
[2025-08-19 09:55:53.960446] INFO: moduleinvoker: dropnan.v1 运行完成[37.680907s].
[2025-08-19 09:55:53.991363] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2025-08-19 09:55:58.583261] INFO: StockRanker预测: /y_2021 ..
[2025-08-19 09:56:04.183252] INFO: StockRanker预测: /y_2022 ..
[2025-08-19 09:56:13.903910] INFO: StockRanker预测: /y_2023 ..
[2025-08-19 09:56:23.541017] INFO: StockRanker预测: /y_2024 ..
[2025-08-19 09:56:29.553433] INFO: StockRanker预测: /y_2025 ..
[2025-08-19 09:56:40.023108] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[46.031742s].
[2025-08-19 09:56:40.220582] INFO: moduleinvoker: backtest.v8 开始运行..
[2025-08-19 09:56:40.237429] INFO: backtest: biglearning backtest:V8.6.3
[2025-08-19 09:56:40.239903] INFO: backtest: product_type:stock by specified
[2025-08-19 09:56:40.452724] INFO: moduleinvoker: cached.v2 开始运行..
[2025-08-19 09:56:40.475509] INFO: moduleinvoker: 命中缓存
[2025-08-19 09:56:40.478781] INFO: moduleinvoker: cached.v2 运行完成[0.026066s].
[2025-08-19 09:57:51.380352] INFO: backtest: algo history_data=DataSource(59c7b0779e96449093a6f1ba74c1ca22T)
[2025-08-19 09:57:51.383143] INFO: algo: TradingAlgorithm V1.8.10
[2025-08-19 09:58:10.153752] INFO: algo: trading transform...
[2025-08-19 09:58:43.944456] INFO: Performance: Simulated 863 trading days out of 863.
[2025-08-19 09:58:43.947229] INFO: Performance: first open: 2022-01-04 09:30:00+00:00
[2025-08-19 09:58:43.949571] INFO: Performance: last close: 2025-07-28 15:00:00+00:00
[2025-08-19 09:59:02.728637] INFO: moduleinvoker: backtest.v8 运行完成[142.50806s].
[2025-08-19 09:59:02.734346] INFO: moduleinvoker: trade.v4 运行完成[142.674718s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-95e94d6289a54fd29537d6eb04541237"}/bigcharts-data-end
- 收益率167.66%
- 年化收益率33.31%
- 基准收益率-16.29%
- 阿尔法0.45
- 贝塔0.99
- 夏普比率1.0
- 胜率0.58
- 盈亏比1.28
- 收益波动率30.39%
- 信息比率0.1
- 最大回撤41.25%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-aaba33bf6d654bd2a2f8c883db9e8328"}/bigcharts-data-end