线性回归算法预测房价

输入:房子的面积, 𝑥

输出:房子的价格, 𝑦

研究假设 :ℎ𝜃(𝑥)=𝜃0+𝜃1∗𝑥

损失函数:𝐽(𝜃0,𝜃1)=12𝑚∑𝑖=1𝑚(ℎ𝜃(𝑥(𝑖))−𝑦(𝑖))2

优化目标:𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜃0,𝜃1𝐽(𝜃0,𝜃1)

[h

由bigquant创建,最终由bigquant更新于

基于随机森林模型的智能选股策略

n_estimators (int) – 树的个数,个数越多,则模型越复杂,计算速度越慢。 max_features (str) – 最多考虑特征个数,新建节点时,最多考虑的特征个数。 max_depth (int) – 每棵树的最大深度,数值大拟合能力强,数值小泛化能力强。 min_samples

由bigquant创建,最终由bigquant更新于

Stacking

stacking

[https://bigquant.com/experimentshare/b38031d7871c46c28991eab884ed5d4e](https://bigquant.com/experimentshare/b38031d7871c46c28991eab884ed5d4

由bigquant创建,最终由bigquant更新于

股票T0-日内回转

股票T0-日内回转

[https://bigquant.com/experimentshare/ba48f0b0757e462784a97bd63590c01f](https://bigquant.com/experimentshare/ba48f0b0757e462784a97bd63590c0

由bigquant创建,最终由bigquant更新于

线性-分类算法

线性-分类算法

[https://bigquant.com/experimentshare/2b8974e1cb4a4212b77ef38a9c9ed3da](https://bigquant.com/experimentshare/2b8974e1cb4a4212b77ef38a9c9ed3da

由bigquant创建,最终由bigquant更新于

随机森林-回归算法

随机森林-回归算法

[https://bigquant.com/experimentshare/b687afc16fd04e0daf365bc09b281599](https://bigquant.com/experimentshare/b687afc16fd04e0daf365bc09b2815

由bigquant创建,最终由bigquant更新于

价值策略-股票名

价值策略-股票名

[https://bigquant.com/experimentshare/b53632659d5b4f43852f341e58b60236](https://bigquant.com/experimentshare/b53632659d5b4f43852f341e58b6023

由bigquant创建,最终由bigquant更新于

StockRanker多因子选股策略

StockRanker多因子选股策略

[https://bigquant.com/experimentshare/efeac61752e24c30ba8757502ad5c6ae](https://bigquant.com/experimentshare/efeac61752e24c30ba875

由bigquant创建,最终由bigquant更新于

分页:第1页第2页第3页第4页第5页
{link}