137-配对交易策略(Pairs Trading)

绩效截图

我们先来看一个策略回测曲线,年化20%多,最大回撤只有十几个点,交易不是特别频繁,但胜率极高。

这就是一个配对交易策略,只买

由qxiao创建,最终由qxiao更新于

DAI SQL FAQ

如何实现自定义的带有窗口的 macro 函数

创建 macro 函数的语法可参见 create macro.

DAI 提供的滚动窗口函数 `m_aggreg

由qxiao创建,最终由qxiao更新于

113-大类资产配置ETF基金交易策略

策略介绍

大类资产配置策略(Asset Allocation Strategy)是投资管理中一种基于投资组合理论的策略,其主要目的是通过在不同类型的资产之间分配投资来优化风险与回报的比例。这些资产类别通常包括股票、债券、现金及现金等价物、不动产、大宗商品以及其他替代投资品种。资产配置的目标

由qxiao创建,最终由small_q更新于

106-微盘策略

策略介绍

本文将介绍经典的微盘策略,并通过编写简单的策略示例进行回测,初步感受如何在BigQuant上实现按某个指标排序并通过一系列条件过滤的量化策略开发。

微盘策略是一种投资策略,其核心思想是选择市值较小的公司进行投资。一般来说,小市值公司的股票价格相对较低,但是具有较高的成长性和投资价

由jliang创建,最终由small_q更新于

106a-新国九条改良版微盘策略

策略介绍

本策略是根据新国九条进行改良的新版微盘策略从而更好筛选需要的股票。

自从2024年新国九条出来后,小市值策略逐渐失效,部分小票退市概率变大,我们先看看国九条中关于股票ST的内容:

可能影响股票被ST或退市的关键因子,这些因子可以作为投资者避免潜在风险的参考:

1、分红情况:如

由bq5bun29创建,最终由small_q更新于

数据平台说明文档

1. 数据任务输出标签

若因子任务和模拟交易任务有特定的依赖标签,请查看以下表格:

中文名 英文名(dai) 输出标签
全年交易日历 all_trading_days
交易日历 trading_days

由hxgre创建,最终由small_q更新于

R-Breaker日内策略-期货分钟_new

策略介绍

R-Breaker日内策略,R-Breaker是一种短线日内交易策略。

策略流程

R-Breaker是一种短线日内交易策略。根据前一个交易日的收盘价(C)、最高价(H)和最低价(L)数据通过一定方式计算出六个价位,从大到小依次为: 突破买入价、观察卖出价、反转卖出价、反转

由qxiao创建,最终由qxiao更新于

网格交易策略-期货分钟_new

策略介绍

网格交易策略

策略流程

第一步:确定价格中枢、压力位和阻力位 第二步:确定网格的数量和间隔 第三步:当价格触碰到网格线时,若高于买入价,则每上升一格卖出m手;若低于买入价,则每下跌一格买入m手。

  1. 确定价格中枢、压力位和阻力位;
  2. 确定网格的数量和间隔;

由qxiao创建,最终由qxiao更新于

101-简单动量策略

策略介绍

动量策略是一种利用历史价格趋势来预测未来价格行为的量化交易策略。这种策略基于一个假设:股票或其他资产的未来价格趋势可能会延续其近期的表现。在实际应用中,动量策略通常会购买表现好的资产并卖出表现差的资产。

策略思想

动量策略的核心是“追涨避跌”。具体来说,这种策略会:

由jliang创建,最终由qxiao更新于

136-期货单品中高频网格交易

策略原理

期货高频网格交易策略是一种在期货市场中利用价格波动来进行频繁买卖操作的策略。其核心思想是通过预设一定的价格间隔(网格),在价格波动中不断进行买入和卖出操作,从而在价格波动中获利。以下是该策略的主要特点和步骤:

主要特点

  1. 频繁交易:高频交易意味着在短时间内进

由qxiao创建,最终由qxiao更新于

123-双均线交易策略

策略介绍

双均线策略是一种简单而又广泛使用的技术分析工具,主要用于识别市场趋势的变化和生成交易信号。这种策略涉及两条移动平均线——一条短期(快速)和一条长期(慢速)——并通过观察这两条线的交叉点来决定买入或卖出的时机。

策略流程

  1. 筛选条件:将5日平均收盘价作为短线,40日平

由xyz142创建,最终由qxiao更新于

303-关于如何使用XGboost训练模型固化并调用

简介

**由于深度学习中的涉及到的随机项过多,比如Dropout 以及随机种子,这样固化模型的重要之处就能够体现出来了。 如果我们没有使用固化模型,在我们的缓存丢失或者更新之后我们的模拟交易以及回测将会触发模型的重新训练,导致原有的模型发生变化。 本文将会针对这个问题提出该如何在Bi

由bqrch0cl创建,最终由small_q更新于

尝试用M.tune写一个滚动训练

前言

为了进一步加深对M.tune的使用理解,这里我给大家写一篇M.tune的实际应用。我们可以使用它来调参,当然也可以用它来做滚动训练,值得注意的是,M.tune只能调节模块的参数:

![](/wiki/api/attachments.redirect?id=9edd75fa-2

由bq7zuymm创建,最终由qxiao更新于

301-滚动训练(draft)

介绍

  • 适合专业用户
  • 在时间上滚动训练策略,跟进数据变化来迭代模型
  • 本文只是一个简单演示,我们将在后续文章里介绍使用和原理

由jliang创建,最终由qxiao更新于

300-StockRanker模型固化并调用

前言

AI量化策略的独特之处在于存在一个AI人工智能模型,模型可以很简单比如是线性回归或决策树模型,模型也可以很复杂,比如是Transformer、CHATGPT等。在BigQuant上使用较多的是一个称为StockRanker的模型,该模型在量化金融数据上进行调优,能取得比xgboost

由qxiao创建,最终由qxiao更新于

数据合并

两个“输入特征(DAI SQL)”模块,分别从两个数据表提取数据,之后可以共同连接一个新的“输入特征(DAI SQL)”模块,做到数据连接的功能

我们来看一个具体的例子,在下面这个例子中:

  • m1模块的作用是从cn_stock_prefactors表中提取出pe_ttm

由small_q创建,最终由qxiao更新于

202-本地文件上传

介绍

  • 本地上传csv文件并读取
  • 和其他数据联合使用

实现

dai处理文件

  • 生成一个csv文件作为测试,包括日期、股票代码、当日涨跌幅。
  • 使用dai直接操作csv,如果是本地csv文件则直接拖拽至资源管理器。

![](/wiki/api/attachme

由iquant创建,最终由qxiao更新于

🌟201-数据与策略分享

介绍

  • 构建和管理自己的数据与因子
  • 分享到策略社区并保护核心逻辑
  • 支持数据付费订阅
  • 支持他人克隆策略,每日获取信号

技术方案

![](/wiki/api/attachments.redirect?id=be72745b-dff3-4d11-918a-0dec5f5

由jliang创建,最终由qxiao更新于

133-可转债双低策略

定义

可转债全称为可转换债券,指债券持有人可按照发行时约定的价格将债券转换成公司的普通股票的债券,如果债券持有人不想转换,则可以继续持有债券,直到偿还期满时收取本金和利息,或则在流通市场出售变现。

如果持有人看好发债公司股票增值潜力,则可以行使转换权,按照预定转换价格将债券转换为股票。

由qxiao创建,最终由qxiao更新于

132-日内均线金叉开仓策略-分钟

交易规则

  • 1分钟频率回测,如果分钟K线的短期均线上穿长期均线平空开多,短期均线下穿长期均线平多。

每个交易日尾盘需要清仓。

策略构建步骤

确定股票池和回测时间

  • 通过证券代码列表输入回测的起止日期

确定买卖条件信号

  • 计算短期短期均线与长期均线,短

由iquant创建,最终由qxiao更新于

131-小市值稳定增长策略

策略介绍

小市值稳健增长策略是一种专注于挖掘市值较小但具有稳健增长潜力的股票的投资策略。该策略通过深入分析这些公司的基本面、财务状况、行业前景以及市场情绪,筛选出具备长期成长潜力的优质小市值公司,以期在未来获得超额回报。通过该策略选择的股票的优势包括有

  • 高增长潜力:小市值公司通

由bqrch0cl创建,最终由qxiao更新于

130-基于StockRanker的基金策略

策略思想

基于价格因子通过StockRanker进行基金的轮动选择。

本策略中使用数据过滤模块对成交量较小的基金进行了过滤。

交易频率

日线。

策略详情

在输入特征模块,进行特征的选取和数据的过滤。

表达式特征输入:

  • `m_avg(volume, 5) AS v

由iquant创建,最终由qxiao更新于

129-多空对冲的AI期货策略

策略简介

该策略为期货多空对冲策略,做多的同时也做空,赚取Alpha对冲收益,信号由算法产生。

标的

商品期货合约

信号产生

将股票市场的成熟算法StockRanker应用在期货市场,根据StockRanker算法预测未来1小时商品期货的涨跌,做多涨幅排序第1的期货品种,

由iquant创建,最终由qxiao更新于

分页:第1页第2页第3页第4页第5页第6页第7页第8页
{link}