因子分析的使用教程
由bqsreatc创建,最终由bqsreatc 被浏览 26 用户
本文介绍平台的因子使用教程利用布林带因子为例子
因子分析原理:
因子分析是基于降维的思想,在尽可能不损失或者少损失原始数据信息的情况下,将错综复杂的众多变量聚合成少数几个独立的公共因子,这几个公共因子可以反映原来众多变量的主要信息,在减少变量个数的同时,又反映了变量之间的内在联系。
因子分析作用 :
通常因子分析有三种作用:一是用于因子降维,二是计算因子权重,三是计算加权计算因子汇总综合得分。
因子降维:使用因子分析对多个观测变量进行降维处理,如将多个问卷题目降维为几个公共因子,提高数据处理效率,如分析用户对产品的态度、品质等。
计算因子权重:使用因子分析计算因子权重,将多个观测变量转换为几个公共因子,从而更好地理解观测变量之间的关系,如分析影响股票价格的因素。
计算加权计算因子汇总综合得分:使用因子分析计算加权综合得分,将多个观测变量转换为几个公共因子,并使用因子载荷计算加权得分,如评估企业综合风险等级。
因子分析第一步导入对应的库
import pandas as pd
import numpy as np
import warnings
import empyrical
import dai
import bigcharts
warnings.filterwarnings('ignore')
from biglearning.api import tools as T
print('导入包完成!')
第二步,建立因子数据,高频一般用python建立,其他因子一般利用sql建立,下面的简单的boll因子
import dai
sql="""
SELECT
date,
instrument,
m_avg(close, 20) - 2 * m_stddev(close, 20) AS boll_lower
FROM
cn_stock_bar1d
WHERE
date >= '2015-01-01'
ORDER BY
date, instrument;
"""
factor_data = dai.query(sql).df()
数据的预处理
amout_df = dai.query("select date, instrument, amount from cn_stock_bar1d where date >= '2015-01-01' ").df()
factor_data = pd.merge(factor_data, amout_df, how='left', on=["date", "instrument"])
# 因子数据处理
factor_data.dropna(subset=[params['factor_field']], inplace=True)
factor_data = factor_data[['instrument', 'date', 'amount',params['factor_field']]]
# 因子数据更多的预处理,包括去除ST、新股、北交所的股票
def factor_data_filter(factor_data):
columns = factor_data.columns
start_date = factor_data.date.min().strftime('%Y-%m-%d')
end_date = factor_data.date.max().strftime('%Y-%m-%d')
factor_data['instrument'] = factor_data['instrument'].apply(lambda x:x[:9])
base_info_df = dai.query("select date, instrument, st_status ,trading_days from cn_stock_factors_base where date >= '%s' and date <= '%s'"%(start_date, end_date)).df()
factor_data = pd.merge(factor_data, base_info_df, how='left', on=['date', 'instrument'])
factor_data = factor_data[(factor_data['st_status'] == 0) & (factor_data['trading_days']> 252)] # 去除st 和上市不足一年的票
factor_data= factor_data[factor_data.instrument.apply(lambda x: True if x.endswith('SH') or x.endswith('SZ') else False)] # 去除北交所的票
factor_data = factor_data[factor_data['amount'] > 0 ] # 去除停牌期间的数据
factor_data.replace([np.inf, -np.inf], np.nan, inplace=True) # 将 inf 替换为 NaN
# 删除包含 NaN 的行
factor_data.dropna(inplace=True)
return factor_data[columns]
factor_data = factor_data_filter(factor_data)
print('因子数据过滤完成')
因子数据结构包含时间,标的代码,因子名称等字段,分析框架在文章最后面
因子分析调用
alpha_instance = AlphaMiner(params=params, factor_data=factor_data)
print(alpha_instance.price_data)
report_html = alpha_instance.render()
运行结果
因子分析结果图
IC与IC累计
因子值最大的标的
因子值最小的标的
主要因子参数说明
portfolio_long:多头组合是指在因子分析中因子值最大的一组,一般是第一组。
portfolio_short:空头组合实在在因子分析中因子值最小的一组,一般是最后一组。
long_short:多空组合是指在因子分析中一般是因子值最大的组合减因子值最小的组合。
IC值的定义:IC代表的是预测值和实现值之间的相关性,通常用于评价预测能力(即选股能力)。I C ∈ [ − 1 , 1 ] 绝 对 值 越 大 , 表 示 预 测 能 力 越 好 ,IC的计算方式有两种:normal IC、rank IC,因为normal IC有一个前提条件,就是数据要服从正态分布,现实往往不理想,所以实际中更多人采用rank IC(秩相关系数)来判断因子的有效性。两者分别对应Pearson 或者 Spearman 相关系数
IC计算公式
ic_*
IC_ * * 是指参数比如3,5,10,参数是滚动窗口函数计算
ic_3 = IC_data['g_ic'].tail(3).mean()
累计ic
累计全部的ic值累加
IR值的定义
IR指的是超额收益的均值与标准差之比。需要多个调仓期,每一个调仓期计算出一个IC值。
IR代表因子获得稳定Alpha的能力。
策略收益
策略收益和回测有差别,但是原理是一样的,在因子分析中策策略收益等于因子分组的最终收益-因子分组的开始收益比因子分组的开始首页,下面是回测的收益进行参考
策略年化收益
年华收益在策略收益的基础上比上了因子分析时间,参考回测年华收益公式
ex_return_ratio超额回报率
超额回报率,也称为超额收益率或者超额利润率。它通常用来衡量投资或资产相对于某个基准(如市场平均水平或某个特定指数)的表现。超额回报率是投资收益与基准收益之间的差值,用百分比表示。
return_volatility收益波动率
收益波动率的计算公式有多种,常见的方法包括标准差法、平均绝对偏差法和GARCH模型等。标准差法:\na. 计算每期的收益率,即当前期的价格减去前一期的价格除以前一期的价格。\nb. 计算收益率序列的均值,即所有收益率的平均值。\nc. 计算每期收益率与均值之差的平方。\nd. 计算平方差的平均值。\ne. 取平均值的平方根,即为收益波动率。
夏普比率
表示每承受一单位总风险,会产生多少的超额报酬,可以同时对策略的收益与风险进行综合考虑。
最大回撤:描述策略可能出现的最糟糕的情况,最极端可能的亏损情况。
胜率:盈利次数在总交易次数中的占比。
信息比率:衡量单位超额风险带来的超额收益。信息比率越大,说明该策略单位跟踪误差所获得的超额收益越高,因此,信息比率较大的策略的表现要优于信息比率较低的基准。合理的投资目标应该是在承担适度风险下,尽可能追求高信息比率。
因子分析框架
### 因子分析工具
class AlphaMiner(object):
def __init__(self, params, factor_data):
# params: 字典格式。 形如 {'group_num':10, 'factor_field':'hf_close_netinflow_rate_small_order_act', 'instruments':'中证500', 'factor_direction':-1, 'benchmark':'中证500'}
# group_num:分组数量 参数类型:int
# factor_field:因子在表中所对应的字段名称 参数类型:str
# instruments:标的池,支持选项:沪深300、中证500、中证1000、全市场 参数类型:str
# factor_direction:因子方向,字符串格式,取值为1、-1。1表示因子方向为正,因子值越大越好,-1表示因子值为负,因子值越小越好。 参数类型:int
# benchmark:基准对比指数,支持选项:沪深300、中证500、中证1000 参数类型:str
# factor_data:pandas.DataFrame格式,形如
# instrument date hf_fz_ykws
# 0 000001.SZ 2017-01-03 1.564644
# 1 000001.SZ 2017-01-04 1.521567
# 2 000001.SZ 2017-01-05 1.519973
# 3 000001.SZ 2017-01-06 1.553225
# 4 000001.SZ 2017-01-09 1.367971
# 其中, instrument:str ,以股票代码+.sh(沪市) +.SZ(深市)
# date:datetime64
# hf_fz_ykws:float64
self.params = params
self.top_n_ins = 5 # 默认5只
self.factor_data = factor_data.rename(columns={self.params['factor_field']:'factor'})
self.factor_data['factor'] *= self.params['factor_direction']
if self.params['data_process'] == True:
self.factor_data = self.factor_data_process('factor')
print("数据预处理完成")
# 检查因子数据格式
try:
self.check_data_format(self.factor_data)
print("数据格式检查通过")
except ValueError as e:
print("数据格式检查失败:" + str(e))
# 进行数据池过滤
self.stock_pool_filter()
self.start_date = self.factor_data.date.min().strftime('%Y-%m-%d')
self.end_date = self.factor_data.date.max().strftime('%Y-%m-%d')
self.price_data = self.get_daily_ret(self.start_date, self.end_date) # 日收益率数据
print('个股日收益率计算完成')
self.merge_data = pd.merge(self.factor_data.sort_values(['date', 'instrument']), \
self.price_data.sort_values(['date', 'instrument']), on=['date','instrument'], how='left')
self.group_data = self.get_group_data() # 分组数据
print('因子分组完成')
self.bm_ret = self.get_bm_ret(self.params['benchmark'])
print('基准日收益率计算完成')
self.group_cumret = self.get_group_cumret() # 分组累积收益率
print('分组收益率计算完成')
self.whole_perf = self.get_whole_perf() # 整体绩效指标
print('整体绩效计算完成')
self.yearly_perf = self.get_yearly_perf() # 按年度绩效指标
print('年度绩效计算完成')
self.ic = self.get_IC_data('all') # ic指标
print('IC计算完成')
def factor_data_process(self, col):
"""因子数据预处理函数,包括去极值、标准化、中性化"""
def zscore(df, train_col):
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df[train_col] = scaler.fit_transform(df[train_col])
return df
def remove_extreme_and_cut_zscore(df, col):
col_list = [col]
for fac in col_list:
n = 3
mean = df[fac].mean() # 计算因子值的均值
std = df[fac].std() # 计算因子值的标准差
lower_bound = mean - n * std # 计算下边界
upper_bound = mean + n * std # 计算上边界
df.loc[df[fac]<lower_bound, fac] = lower_bound
df.loc[df[fac]>upper_bound, fac] = upper_bound
df = zscore(df, col_list)
return df
factor_data = self.factor_data.groupby('date').apply(remove_extreme_and_cut_zscore, col=col)
factor_data = factor_data.fillna(0) # 用0进行填充
start_date = factor_data.date.min().strftime("%Y-%m-%d")
end_date = factor_data.date.max().strftime("%Y-%m-%d")
sql = """
SELECT date, instrument, industry_level1_code
FROM cn_stock_industry_component
WHERE date >= '{0}' and date <= '{1}' and industry =='sw2021'
ORDER BY instrument, date;
""".format(start_date, end_date)
df_industry = dai.query(sql).df()
df_industry = df_industry.dropna()
factor_data = factor_data.merge(df_industry, on=['date', 'instrument'])
industry_list = df_industry['industry_level1_code'].unique()
sql = """
SELECT date, instrument, total_market_cap
FROM cn_stock_valuation
WHERE date >= '{0}' and date <= '{1}'
ORDER BY instrument, date;
""".format(start_date, end_date)
df_market_cap = dai.query(sql).df()
factor_data = factor_data.merge(df_market_cap, on=['date', 'instrument'])
factor_data['log_cap'] = np.log(factor_data.total_market_cap)
#截面中性化
def neutralize(df, col):
import warnings
warnings.filterwarnings('ignore')
import statsmodels.api as sm
col_list = [col]
for fac in col_list:
ind_dummies = pd.get_dummies(df['industry_level1_code'], prefix='industry_level1_code')
mkcap = df['log_cap']
train = pd.concat([ind_dummies,mkcap],axis=1)
X = sm.add_constant(train)
y = df[fac]
model = sm.OLS(y, X).fit()
df[fac] = model.resid
return df
res = factor_data.groupby('date').apply(neutralize, col=col)
res.sort_values(by='date', inplace=True)
res.reset_index(inplace=True, drop=True)
return res
def check_data_format(self, df):
# 检查date列是否是日期型类型
if df['date'].dtype != 'datetime64[ns]':
raise ValueError("date列的数据格式应为datetime格式")
# 检查instrument列是否是以SZ\SH结尾
if not all(df['instrument'].str.endswith('.SH') | df['instrument'].str.endswith('.SZ') | df['instrument'].str.endswith('.BJ')):
raise ValueError("instrument列的数据格式应为以.SH或.SZ或.BJ结尾的字符串")
# 检查factor列是否是浮点型数值
if df['factor'].dtype != 'float64':
raise ValueError("factor列的数据格式应为浮点型")
def stock_pool_filter(self):
pools = self.params['instruments']
if pools == "沪深300":
index_code = '000300.SH'
elif pools == "中证500":
index_code = '000905.SH'
elif pools == "中证1000":
index_code = '000852.SH'
elif pools == "全市场":
return
else:
print('请检查输入的指数池是否正确')
index_com_df = dai.query("select * from cn_stock_index_component where date >= '2015-01-01' and instrument == '%s' order by date, instrument "%index_code).df()
factor_df = self.factor_data
merge_df = pd.merge(factor_df, index_com_df, how='inner', left_on=['date','instrument'], right_on=['date', 'member_code'])[['instrument_x','date','factor']]
merge_df.rename(columns={'instrument_x':'instrument'}, inplace=True)
self.factor_data = merge_df
def get_daily_ret(self, start_date, end_date):
"""计算收益率. T0的因子对应的收益率是T+1日开盘买入,T+2开盘卖出"""
sql = f"SELECT instrument,date, (m_lead(open, 2)/ m_lead(open, 1) - 1) AS daily_ret from cn_stock_bar1d ORDER BY date, instrument;"
from datetime import datetime, timedelta
ten_days_ago_start_date = pd.Timestamp(self.start_date) - timedelta(days=10) # 往前多取10天数据
ten_days_ago_start_date = ten_days_ago_start_date.strftime('%Y-%m-%d')
price_data = dai.query(sql, filters={"date": [ten_days_ago_start_date, self.end_date]}).df()
return price_data
def get_group_data(self):
"""因子分组,因子值越大,组数越大,默认的多头组合是因子数值最大的组合"""
def cut(df, group_num=10):
"""分组"""
df = df.drop_duplicates('factor') # 删除重复值
df['group'] = pd.qcut(df['factor'], q=group_num, labels=False, duplicates='drop')
df = df.dropna(subset=['group'], how='any')
df['group'] = df['group'].apply(int).apply(str)
return df
group_data = self.merge_data.groupby('date', group_keys=False).apply(cut, group_num=self.params['group_num'])
return group_data
def get_bm_ret(self, benchmark):
if benchmark == "沪深300":
bm_code = '000300.SH'
elif benchmark == "中证500":
bm_code = '000905.SH'
elif benchmark == "中证1000":
bm_code = '000852.SH'
else:
print('请检查输入的基准代码是否正确')
# 获取基准日收益率数据
bm_sql = """
SELECT
date,instrument, (close - m_Lag(close,1)) / m_LAG(close, 1) as benchmark_ret
FROM cn_stock_index_bar1d
WHERE instrument = '%s'
AND date >= '%s' and date <='%s' ;"""%(bm_code, self.start_date, self.end_date)
bm_ret = dai.query(bm_sql).df()
return bm_ret
def get_group_cumret(self):
# 分组收益率
groupret_data = self.group_data[['date','group','daily_ret']].groupby(['date','group'], group_keys=False).apply(lambda x:np.nanmean(x)).reset_index()
groupret_data.rename(columns={0:'g_ret'}, inplace=True)
groupret_pivotdata = groupret_data.pivot(index='date', values='g_ret', columns='group')
groupret_pivotdata['ls'] = groupret_pivotdata[str(self.params['group_num']-1)] - groupret_pivotdata['0'] # 日收益率
bm_ret = self.bm_ret.set_index('date') # 基准收益率
groupret_pivotdata['bm'] = bm_ret['benchmark_ret']
groupret_pivotdata = groupret_pivotdata.shift(1) # 首日为nan,最后一日有值
self.groupret_pivotdata = groupret_pivotdata
groupcumret_pivotdata = groupret_pivotdata.cumsum() # 单利下的累积收益率
return groupcumret_pivotdata.round(4) # 数值型数据都是保留到小数点后四位
def get_Performance(self, data_type):
def get_stats(series, bm_series):
"""
series是日收益率数据, pandas.series
data_type是组合类型, 'long'、'short'、'long_short'
"""
return_ratio = series.sum() # 总收益
annual_return_ratio = series.sum() * 242 / len(series) # 年度收益
ex_return_ratio = (series-bm_series).sum() # 超额总收益
ex_annual_return_ratio = (series-bm_series).sum() * 242 / len( (series-bm_series)) # 超额年度收益
sharp_ratio = empyrical.sharpe_ratio(series, 0.035/242)
return_volatility = empyrical.annual_volatility(series)
max_drawdown = empyrical.max_drawdown(series)
information_ratio=series.mean()/series.std()
win_percent = len(series[series>0]) / len(series)
trading_days = len(series)
series = series.fillna(0)
ret_3 = series.rolling(3).sum().iloc[-1]
ret_10 = series.rolling(10).sum().iloc[-1]
ret_21 = series.rolling(21).sum().iloc[-1]
ret_63 = series.rolling(63).sum().iloc[-1]
ret_126 = series.rolling(126).sum().iloc[-1]
ret_252 = series.rolling(252).sum().iloc[-1]
return {
'return_ratio': return_ratio,
'annual_return_ratio': annual_return_ratio,
'ex_return_ratio': ex_return_ratio,
'ex_annual_return_ratio': ex_annual_return_ratio,
'sharp_ratio': sharp_ratio,
'return_volatility': return_volatility,
'information_ratio':information_ratio,
'max_drawdown': max_drawdown,
'win_percent':win_percent,
'trading_days':trading_days,
'ret_3':ret_3,
'ret_10':ret_10,
'ret_21':ret_21,
'ret_63':ret_63,
'ret_126':ret_126,
'ret_252':ret_252
}
if data_type == 'long':
perf = get_stats(self.groupret_pivotdata[str(self.params['group_num']-1)], self.groupret_pivotdata['bm'])
elif data_type =='short':
perf = get_stats(self.groupret_pivotdata['0'], self.groupret_pivotdata['bm'])
elif data_type =='long_short':
perf = get_stats(self.groupret_pivotdata['ls'], self.groupret_pivotdata['bm'])
return perf
def get_IC_data(self, data_type):
# IC
def cal_ic(df):
return df['daily_ret'].corr(df['factor'], method='spearman')
if data_type == 'all':
groupIC_data = self.group_data[['date','daily_ret','factor']].groupby('date', group_keys=False).apply(lambda x:cal_ic(x)).reset_index()
groupIC_data.rename(columns={0:'g_ic'}, inplace=True)
groupIC_data = groupIC_data.shift(1) # 首日为nan,最后一日有值
groupIC_data['ic_cumsum'] = groupIC_data['g_ic'].cumsum()
groupIC_data['ic_roll_ma'] = groupIC_data['g_ic'].rolling(22).mean()
return groupIC_data.round(4).dropna()
elif data_type == 'long':
data = self.group_data[self.group_data['group'] == str(self.params['group_num']-1)][['date','daily_ret','factor']]
groupIC_data = data.groupby('date', group_keys=False).apply(lambda x:cal_ic(x)).reset_index()
elif data_type == 'short':
data = self.group_data[self.group_data['group'] == '0'][['date','daily_ret','factor']]
groupIC_data = data.groupby('date', group_keys=False).apply(lambda x:cal_ic(x)).reset_index()
elif data_type == 'long_short':
data = self.group_data[self.group_data['group'].isin(['0',str(self.params['group_num']-1)])][['date','daily_ret','factor']]
groupIC_data = data.groupby('date', group_keys=False).apply(lambda x:cal_ic(x)).reset_index()
IC_data = groupIC_data.rename(columns={0:'g_ic'}).dropna()
ic_mean = np.nanmean(IC_data['g_ic'])
ir = np.nanmean(IC_data['g_ic']) / np.nanstd(IC_data['g_ic'])
ic_3 = IC_data['g_ic'].tail(3).mean()
ic_10 = IC_data['g_ic'].tail(10).mean()
ic_21 = IC_data['g_ic'].tail(21).mean()
ic_63 = IC_data['g_ic'].tail(63).mean()
ic_126 = IC_data['g_ic'].tail(126).mean()
ic_252 = IC_data['g_ic'].tail(252).mean()
return {
'ic':ic_mean,
'ir':ir,
'ic_3':ic_3,
'ic_10':ic_10,
'ic_21':ic_21,
'ic_63':ic_63,
'ic_126':ic_126,
'ic_252':ic_252
}
def get_Turnover_data(self, data_type):
def cal_turnover(df):
# 求每天instrument和上一日的重复元素数量
def count_repeat(s):
if s.name > 0:
return len(set(s['instrument']).intersection(set(df.loc[s.name - 1, 'instrument'])))
else:
return 0
s = df.groupby('date').apply(lambda x:x.instrument.tolist())
df = pd.DataFrame(s, columns = ['instrument']).reset_index()
# 求每天instrument有多少元素
df['instrument_count'] = df['instrument'].apply(len)
df['repeat_count'] = df.apply(count_repeat, axis=1)
df['turnover'] = 1 - df['repeat_count'] / df['instrument_count']
return np.nanmean(df['turnover'])
if data_type == 'long':
df = self.group_data[self.group_data['group'] == str(self.params['group_num']-1)]
return {'turnover':cal_turnover(df)}
elif data_type == 'short':
df = self.group_data[self.group_data['group'] == '0']
return {'turnover':cal_turnover(df)}
elif data_type == 'long_short':
long_df = self.group_data[self.group_data['group'] == str(self.params['group_num']-1)]
short_df = self.group_data[self.group_data['group'] == '0']
return {'turnover':cal_turnover(long_df) + cal_turnover(short_df)}
## 总体绩效计算
def get_whole_perf(self):
summary_df = pd.DataFrame()
for _type in ['long', 'short', 'long_short']:
dict_merged = {}
dict1 = self.get_IC_data(_type)
dict2 = self.get_Performance(_type)
dict3 = self.get_Turnover_data(_type)
dict_merged.update(dict1)
dict_merged.update(dict2)
dict_merged.update(dict3)
df = pd.DataFrame.from_dict(dict_merged, orient='index', columns=['value']).T
df['portfolio'] = _type
summary_df = summary_df.append(df)
summary_df.index = range(len(summary_df))
return summary_df.round(4)
# 按年绩效计算
def get_yearly_perf(self):
# 计算年度绩效指标
year_df = self.groupret_pivotdata.reset_index('date')
year_df['year'] = year_df['date'].apply(lambda x:x.year)
def cal_Performance(data):
series = data[str(self.params['group_num']-1)] # 只看多头组合
bm_series = data['bm']
return_ratio = series.sum() # 总收益
annual_return_ratio = series.sum() * 242 / len(series) # 年度收益
ex_return_ratio = (series-bm_series).sum() # 总收益
ex_annual_return_ratio = (series-bm_series).sum() * 242 / len(series-bm_series) # 年度收益
sharp_ratio = empyrical.sharpe_ratio(series,0.035/242)
return_volatility = empyrical.annual_volatility(series)
max_drawdown = empyrical.max_drawdown(series)
information_ratio=series.mean()/series.std()
win_percent = len(series[series>0]) / len(series)
trading_days = len(series)
perf = pd.DataFrame({
'return_ratio': [return_ratio],
'annual_return_ratio': [annual_return_ratio],
'ex_return_ratio': [ex_return_ratio],
'ex_annual_return_ratio': [ex_annual_return_ratio],
'sharp_ratio': [sharp_ratio],
'return_volatility': [return_volatility],
'max_drawdown': [max_drawdown],
'win_percent':[win_percent],
'trading_days':[int(trading_days)],
})
return perf
yearly_perf = year_df.groupby(['year'], group_keys=True).apply(cal_Performance)
yearly_perf = yearly_perf.droplevel(1).round(4) # 去掉一个level
# 计算年度IC
data = self.group_data[self.group_data['group'] == str(self.params['group_num']-1)][['date','daily_ret','factor']] # 只看多头组合
def cal_ic(df):
return df['daily_ret'].corr(df['factor'])
groupIC_data = data.groupby('date', group_keys=False).apply(lambda x:cal_ic(x)).reset_index()
IC_data = groupIC_data.rename(columns={0:'g_ic'}).dropna()
IC_data['year'] = IC_data['date'].apply(lambda x:x.year)
yearly_IC = IC_data.groupby('year').apply(lambda x:np.nanmean(x['g_ic']))
yearly_perf['ic'] = yearly_IC.round(4)
yearly_perf = yearly_perf.reset_index()
yearly_perf['year'] = yearly_perf['year'].apply(str)
return yearly_perf
def render(self):
"""图表展示因子分析结果"""
from bigcharts import opts
fields = ['portfolio','ic', 'ir', 'turnover', 'return_ratio', 'annual_return_ratio','ex_return_ratio', 'ex_annual_return_ratio', 'sharp_ratio', 'return_volatility', 'information_ratio', 'max_drawdown', 'win_percent', 'ic_252', 'ret_252']
whole_perf = self.whole_perf[fields]
c1 = bigcharts.Chart(
data=whole_perf,
type_="table",
chart_options=dict(
title_opts=opts.ComponentTitleOpts(title="整体绩效指标")
),
y=list(whole_perf.columns))
fields = ['year','ic', 'return_ratio', 'annual_return_ratio', 'ex_return_ratio', 'ex_annual_return_ratio', 'sharp_ratio', 'return_volatility',
'max_drawdown', 'win_percent', 'trading_days']
yearly_perf = self.yearly_perf[fields]
c2 = bigcharts.Chart(
data=yearly_perf,
type_="table",
chart_options=dict(
title_opts=opts.ComponentTitleOpts(title="年度绩效指标(多头组合)")
),
y=list(yearly_perf.columns))
# 绘制累积收益图
c3 = bigcharts.Chart(
data=self.group_cumret,
type_="line",
x=self.group_cumret.index,
y=self.group_cumret.columns)
_IC = np.nanmean(alpha_instance.ic['g_ic'])
_IR = np.nanmean(alpha_instance.ic['g_ic']) / np.nanstd(alpha_instance.ic['g_ic'])
abs_IC = alpha_instance.ic['g_ic'].abs()
significant_ic_ratio = abs_IC[abs_IC>=0.02].shape[0] / abs_IC.shape[0]
c4 = bigcharts.Chart(
data=pd.DataFrame({'IC':[np.round(_IC,4)], '|IC|>0.02':[np.round(significant_ic_ratio,4)], 'IR':[np.round(_IR,4)]}),
type_="table",
chart_options=dict(
title_opts=opts.ComponentTitleOpts(title="IC分析指标")
),
y=['IC','|IC|>0.02','IR'],
)
# 绘制每期IC时序图
c5 = bigcharts.Chart(
data=self.ic,
type_="bar",
x='date',
y=['g_ic', 'ic_roll_ma'],
chart_options=dict(
title_opts=opts.TitleOpts(
title="IC曲线",
subtitle="每日IC、累计IC、近22日IC均值",
pos_left="center",
pos_top="top",
),
legend_opts=opts.LegendOpts(
is_show=False, # 不显示图例
),
extend_yaxis=[opts.AxisOpts()]
)
)
# 绘制IC累计曲线图
c6 = bigcharts.Chart(
data=self.ic,
type_="line",
x='date',
y=['ic_cumsum'],
chart_options=dict(
title_opts=opts.TitleOpts(
title="IC累积曲线",
pos_left="center",
pos_top="top",
),
legend_opts=opts.LegendOpts(
is_show=False, # 不显示图例
)
),
series_options={"ic_cumsum": {"yaxis_index": 1}}
)
c5_6 = bigcharts.Chart(data = [c5, c6], type_ = "overlap",)
top_factor_df = self.factor_data[self.factor_data['date'] == self.end_date].round(4) # 最后一天因子数据
top_factor_df['date'] = top_factor_df['date'].apply(lambda x:x.strftime('%Y-%m-%d'))
# 按照 factor 列升序排序,获取最小的10行数据
df_sorted_min = top_factor_df.sort_values('factor').head(self.top_n_ins)
# 按照 factor 列降序排序,获取最大的10行数据
df_sorted_max = top_factor_df.sort_values('factor', ascending=False).head(self.top_n_ins)
c7 = bigcharts.Chart(
data=df_sorted_max,
type_="table",
chart_options=dict(
title_opts=opts.ComponentTitleOpts(title="因子值最大的%s只标的"%self.top_n_ins)
),
y=['date','instrument','factor'],
)
c8 = bigcharts.Chart(
data=df_sorted_min[['date','instrument','factor']],
type_="table",
chart_options=dict(
title_opts=opts.ComponentTitleOpts(title="因子值最小的%s只标的"%self.top_n_ins)
),
y=['date','instrument','factor'],
)
c_set = bigcharts.Chart([c1, c2, c3, c4, c5_6, c7, c8], type_="page").render(display=False)
from IPython.display import display
display(c_set)
return c_set.data
\