小白求教,我按教学做的,为啥结果是负的啊。。。

策略分享
标签: #<Tag:0x00007fcf79ac9388>

(mvp3) #1
克隆策略

    {"Description":"实验创建于2020/10/17","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-134:instruments","SourceOutputPortId":"-118:data"},{"DestinationInputPortId":"-34:instruments","SourceOutputPortId":"-118:data"},{"DestinationInputPortId":"-61:instruments","SourceOutputPortId":"-126:data"},{"DestinationInputPortId":"-132:instruments","SourceOutputPortId":"-126:data"},{"DestinationInputPortId":"-50:data1","SourceOutputPortId":"-134:data"},{"DestinationInputPortId":"-34:features","SourceOutputPortId":"-29:data"},{"DestinationInputPortId":"-41:features","SourceOutputPortId":"-29:data"},{"DestinationInputPortId":"-61:features","SourceOutputPortId":"-29:data"},{"DestinationInputPortId":"-68:features","SourceOutputPortId":"-29:data"},{"DestinationInputPortId":"-85:features","SourceOutputPortId":"-29:data"},{"DestinationInputPortId":"-41:input_data","SourceOutputPortId":"-34:data"},{"DestinationInputPortId":"-50:data2","SourceOutputPortId":"-41:data"},{"DestinationInputPortId":"-57:input_data","SourceOutputPortId":"-50:data"},{"DestinationInputPortId":"-85:training_ds","SourceOutputPortId":"-57:data"},{"DestinationInputPortId":"-68:input_data","SourceOutputPortId":"-61:data"},{"DestinationInputPortId":"-77:input_data","SourceOutputPortId":"-68:data"},{"DestinationInputPortId":"-100:data","SourceOutputPortId":"-77:data"},{"DestinationInputPortId":"-100:model","SourceOutputPortId":"-85:model"},{"DestinationInputPortId":"-132:options_data","SourceOutputPortId":"-100:predictions"}],"ModuleNodes":[{"Id":"-118","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2013-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2016-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-118"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-118","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"训练数据范围","CommentCollapsed":false},{"Id":"-126","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-126"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-126","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"测试数据范围","CommentCollapsed":false},{"Id":"-134","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000002.HIX","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-134"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-134","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"-29","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-29"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-29","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true},{"Id":"-34","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"2013-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2016-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"20","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-34"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-34"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-34","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"Comment":"","CommentCollapsed":true},{"Id":"-41","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-41"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-41"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-41","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"Comment":"","CommentCollapsed":true},{"Id":"-50","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-50"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-50"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-50","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"Comment":"","CommentCollapsed":true},{"Id":"-57","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-57"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-57"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-57","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"Comment":"","CommentCollapsed":true},{"Id":"-61","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"20","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-61"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-61"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-61","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"Comment":"","CommentCollapsed":true},{"Id":"-68","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-68"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-68"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-68","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"Comment":"","CommentCollapsed":true},{"Id":"-77","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-77"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-77"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-77","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"Comment":"","CommentCollapsed":true},{"Id":"-85","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-85"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-85"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-85"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-85"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-85","OutputType":null},{"Name":"feature_gains","NodeId":"-85","OutputType":null},{"Name":"m_lazy_run","NodeId":"-85","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"Comment":"","CommentCollapsed":true},{"Id":"-100","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-100"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"-100"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"-100","OutputType":null},{"Name":"m_lazy_run","NodeId":"-100","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"Comment":"","CommentCollapsed":true},{"Id":"-132","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-132"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-132"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-132"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-132"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-132"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-132","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":15,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-118' Position='75,147,200,200'/><NodePosition Node='-126' Position='678.4660034179688,152.21401977539062,200,200'/><NodePosition Node='-134' Position='0.91400146484375,318.2959899902344,200,200'/><NodePosition Node='-29' Position='336.03631591796875,-4.039894104003906,200,200'/><NodePosition Node='-34' Position='290.78228759765625,319.8367614746094,200,200'/><NodePosition Node='-41' Position='261.50030517578125,447.61273193359375,200,200'/><NodePosition Node='-50' Position='159.01333618164062,549.2124252319336,200,200'/><NodePosition Node='-57' Position='182.97128295898438,652.5867919921875,200,200'/><NodePosition Node='-61' Position='691.5112609863281,291.5967712402344,200,200'/><NodePosition Node='-68' Position='688.8493347167969,416.71075439453125,200,200'/><NodePosition Node='-77' Position='702.1593017578125,533.8387451171875,200,200'/><NodePosition Node='-85' Position='358.663330078125,728.0101318359375,200,200'/><NodePosition Node='-100' Position='741.9114379882812,786.4543075561523,200,200'/><NodePosition Node='-132' Position='651.6364135742188,900.7672729492188,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [62]:
    # 本代码由可视化策略环境自动生成 2020年10月17日 16:02
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:初始化函数,只执行一次
    def m15_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.hold_days = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m15_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.hold_days
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m15_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m15_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2013-01-01',
        end_date='2016-12-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m3 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000002.HIX',
        drop_na_label=True,
        cast_label_int=True,
        user_functions={}
    )
    
    m2 = M.instruments.v2(
        start_date='2017-01-01',
        end_date='2018-12-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m4 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    return_5
    return_10
    return_20
    avg_amount_0/avg_amount_5
    avg_amount_5/avg_amount_20
    rank_avg_amount_0/rank_avg_amount_5
    rank_avg_amount_5/rank_avg_amount_10
    rank_return_0
    rank_return_5
    rank_return_10
    rank_return_0/rank_return_5
    rank_return_5/rank_return_10
    pe_ttm_0
    """
    )
    
    m5 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m4.data,
        start_date='2013-01-01',
        end_date='2016-12-31',
        before_start_days=20
    )
    
    m6 = M.derived_feature_extractor.v3(
        input_data=m5.data,
        features=m4.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m7 = M.join.v3(
        data1=m3.data,
        data2=m6.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m8 = M.dropnan.v2(
        input_data=m7.data
    )
    
    m9 = M.general_feature_extractor.v7(
        instruments=m2.data,
        features=m4.data,
        start_date='2017-01-01',
        end_date='2018-12-31',
        before_start_days=20
    )
    
    m10 = M.derived_feature_extractor.v3(
        input_data=m9.data,
        features=m4.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    m11 = M.dropnan.v2(
        input_data=m10.data
    )
    
    m12 = M.stock_ranker_train.v6(
        training_ds=m8.data,
        features=m4.data,
        learning_algorithm='排序',
        number_of_leaves=30,
        minimum_docs_per_leaf=1000,
        number_of_trees=20,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        data_row_fraction=1,
        ndcg_discount_base=1,
        m_lazy_run=False
    )
    
    m13 = M.stock_ranker_predict.v5(
        model=m12.model,
        data=m11.data,
        m_lazy_run=False
    )
    
    m15 = M.trade.v4(
        instruments=m2.data,
        options_data=m13.predictions,
        start_date='',
        end_date='',
        initialize=m15_initialize_bigquant_run,
        handle_data=m15_handle_data_bigquant_run,
        prepare=m15_prepare_bigquant_run,
        before_trading_start=m15_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark=''
    )
    
    设置评估测试数据集,查看训练曲线
    [视频教程]StockRanker训练曲线
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-a0d1044542ad48e9bc72133e6336d5ae"}/bigcharts-data-end
    • 收益率-55.53%
    • 年化收益率-34.25%
    • 基准收益率-9.05%
    • 阿尔法-0.42
    • 贝塔0.19
    • 夏普比率-2.55
    • 胜率0.52
    • 盈亏比0.64
    • 收益波动率17.04%
    • 信息比率-0.11
    • 最大回撤58.03%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4471bed9e25c48daaba58a1ebfecef33"}/bigcharts-data-end

    帮我看看那,谢谢拉

    (adhaha111) #2

    您好,模型的训练中,训练集和预测集的时间段选择很重要,不同的数据集会训练出完全不同的效果,不同时间段中因子所起的作用也是不同的,您这里得到的负收益率是一个正常效果


    (mvp3) #3

    哦,虽然不是很明白。。。还是谢谢了
    那我再继续往后面学习吧