策略报错“data_source_create() got an unexpected keyword argument 'is_datahub'”

策略分享
标签: #<Tag:0x00007f4cdb36b1e8>

(youknowwyq) #1
克隆策略

    {"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-106:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-773:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-768:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-778:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-243:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-251:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-3895:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-3907:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-278:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-287:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-273:features_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-328:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-122:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-141:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-113:input_data","SourceOutputPortId":"-106:data"},{"DestinationInputPortId":"-278:input_1","SourceOutputPortId":"-113:data"},{"DestinationInputPortId":"-129:input_data","SourceOutputPortId":"-122:data"},{"DestinationInputPortId":"-287:input_1","SourceOutputPortId":"-129:data"},{"DestinationInputPortId":"-3880:inputs","SourceOutputPortId":"-160:data"},{"DestinationInputPortId":"-356:inputs","SourceOutputPortId":"-160:data"},{"DestinationInputPortId":"-1540:trained_model","SourceOutputPortId":"-1098:data"},{"DestinationInputPortId":"-286:input_1","SourceOutputPortId":"-1098:data"},{"DestinationInputPortId":"-2431:input_1","SourceOutputPortId":"-1540:data"},{"DestinationInputPortId":"-141:options_data","SourceOutputPortId":"-2431:data_1"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-768:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"-773:data"},{"DestinationInputPortId":"-344:input_data","SourceOutputPortId":"-778:data"},{"DestinationInputPortId":"-3895:input_1","SourceOutputPortId":"-243:data"},{"DestinationInputPortId":"-3907:input_1","SourceOutputPortId":"-251:data"},{"DestinationInputPortId":"-1098:input_model","SourceOutputPortId":"-3880:data"},{"DestinationInputPortId":"-1098:training_data","SourceOutputPortId":"-3895:data_1"},{"DestinationInputPortId":"-1098:validation_data","SourceOutputPortId":"-3895:data_2"},{"DestinationInputPortId":"-1540:input_data","SourceOutputPortId":"-3907:data_1"},{"DestinationInputPortId":"-648:inputs","SourceOutputPortId":"-356:data"},{"DestinationInputPortId":"-106:features","SourceOutputPortId":"-273:data"},{"DestinationInputPortId":"-113:features","SourceOutputPortId":"-273:data"},{"DestinationInputPortId":"-122:features","SourceOutputPortId":"-273:data"},{"DestinationInputPortId":"-129:features","SourceOutputPortId":"-273:data"},{"DestinationInputPortId":"-768:input_1","SourceOutputPortId":"-278:data"},{"DestinationInputPortId":"-778:input_1","SourceOutputPortId":"-287:data"},{"DestinationInputPortId":"-3880:outputs","SourceOutputPortId":"-348:data"},{"DestinationInputPortId":"-243:input_data","SourceOutputPortId":"-328:data"},{"DestinationInputPortId":"-251:input_data","SourceOutputPortId":"-344:data"},{"DestinationInputPortId":"-2431:input_2","SourceOutputPortId":"-344:data"},{"DestinationInputPortId":"-348:inputs","SourceOutputPortId":"-641:data"},{"DestinationInputPortId":"-365:inputs","SourceOutputPortId":"-648:data"},{"DestinationInputPortId":"-641:inputs","SourceOutputPortId":"-365:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2018-12-31","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":" ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-shift(benchmark_close, -5)/shift(benchmark_close, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"2014-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2019-08-30","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-106","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"30","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-106"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-106"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-106","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-113","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-113"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-113"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-113","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-122","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-08-30","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"30","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-122"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-122"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-122","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-129","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-129"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-129"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-129","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-141","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 30\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.9\n context.options['hold_days'] = 5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n if context.trading_day_index % 20 != 0:\n return\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-141"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-141","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-160","ModuleId":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","ModuleParameters":[{"Name":"shape","Value":"14,10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dtype","Value":"float32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sparse","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-160"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-160","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1098","ModuleId":"BigQuantSpace.dl_model_train.dl_model_train-v1","ModuleParameters":[{"Name":"optimizer","Value":"RMSprop","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_optimizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"loss","Value":"mean_squared_error","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_loss","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"metrics","Value":"mae","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_size","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"epochs","Value":"500","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"2:每个epoch输出一行记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-1098"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_data","NodeId":"-1098"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"validation_data","NodeId":"-1098"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1098","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1540","ModuleId":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","ModuleParameters":[{"Name":"batch_size","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"2:每个epoch输出一行记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trained_model","NodeId":"-1540"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1540"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1540","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2431","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-2431"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-2431"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-2431"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-2431","OutputType":null},{"Name":"data_2","NodeId":"-2431","OutputType":null},{"Name":"data_3","NodeId":"-2431","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-768","ModuleId":"BigQuantSpace.standardlize.standardlize-v8","ModuleParameters":[{"Name":"columns_input","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-768"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-768"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-768","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-773","ModuleId":"BigQuantSpace.standardlize.standardlize-v8","ModuleParameters":[{"Name":"columns_input","Value":"label","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-773"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-773"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-773","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-778","ModuleId":"BigQuantSpace.standardlize.standardlize-v8","ModuleParameters":[{"Name":"columns_input","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-778"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-778"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-778","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":25,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-243","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":"11","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-243"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-243"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-243","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":26,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-251","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":"11","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-251"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-251"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-251","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":27,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3880","ModuleId":"BigQuantSpace.dl_model_init.dl_model_init-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-3880"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"outputs","NodeId":"-3880"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3880","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":34,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3895","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_pickle()\n feature_len = len(input_2.read_pickle()) \n \n df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))\n flag = int(len(df['y'])/3)\n print(\"flag:\", flag)\n val_x = df['x'][:flag]\n val_y = df['y'][:flag]\n partial_x = df['x'][flag:]\n partial_y = df['y'][flag:]\n val = {'x':val_x, 'y':val_y}\n train = {'x':partial_x, 'y':partial_y}\n \n # 划分2/3训练集和1/3验证集\n data_1 = DataSource.write_pickle(train)\n data_2 = DataSource.write_pickle(val)\n return Outputs(data_1=data_1, data_2=data_2)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-3895"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-3895"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-3895"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-3895","OutputType":null},{"Name":"data_2","NodeId":"-3895","OutputType":null},{"Name":"data_3","NodeId":"-3895","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3907","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_pickle()\n feature_len = len(input_2.read_pickle())\n \n \n df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))\n \n data_1 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-3907"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-3907"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-3907"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-3907","OutputType":null},{"Name":"data_2","NodeId":"-3907","OutputType":null},{"Name":"data_3","NodeId":"-3907","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-356","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"8","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"he_normal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"he_normal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"L1L2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":"0.2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-356"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-356","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-273","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"industry_sw_level1_0\nmarket_cap_float_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-273"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-273","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-278","ModuleId":"BigQuantSpace.neutralize.neutralize-v13","ModuleParameters":[{"Name":"market_value_key","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_output_key","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market_col_name","Value":"market_cap_float_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_sw_col_name","Value":"industry_sw_level1_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"columns_input","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-278"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-278"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-278","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-287","ModuleId":"BigQuantSpace.neutralize.neutralize-v13","ModuleParameters":[{"Name":"market_value_key","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_output_key","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market_col_name","Value":"market_cap_float_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_sw_col_name","Value":"industry_sw_level1_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"columns_input","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-287"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-287"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-287","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-348","ModuleId":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","ModuleParameters":[{"Name":"units","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-348"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-348","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":29,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-328","ModuleId":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","ModuleParameters":[{"Name":"index_constituent_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"board_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"st_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-328"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-328","OutputType":null},{"Name":"left_data","NodeId":"-328","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":30,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-344","ModuleId":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","ModuleParameters":[{"Name":"index_constituent_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"board_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"st_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-344"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-344","OutputType":null},{"Name":"left_data","NodeId":"-344","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":32,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-286","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1):\n import matplotlib.pyplot as plt\n plt.style.use('seaborn')\n\n history = input_1.read()['history']\n loss = history['loss']\n val_loss = history['val_loss']\n mae = history['mean_absolute_error']\n val_mae = history['val_mean_absolute_error']\n epochs = range(1, len(loss) + 1)\n\n plt.figure(1)\n plt.plot(epochs, loss, 'bo', label='Training loss')\n plt.plot(epochs, val_loss, 'b', label='Validation loss')\n plt.title('Training and validation loss')\n plt.xlabel('Epochs')\n plt.ylabel('Loss')\n plt.legend()\n plt.show()\n\n plt.figure(2)\n plt.plot(epochs, mae, 'bo', label='Training mae')\n plt.plot(epochs, val_mae, 'b', label='Validation mae')\n plt.title('Training and validation mean absolute error')\n plt.xlabel('Epochs')\n plt.ylabel('MAE')\n plt.legend()\n plt.show()\n \n return Outputs()\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-286"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-286"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-286"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-286","OutputType":null},{"Name":"data_2","NodeId":"-286","OutputType":null},{"Name":"data_3","NodeId":"-286","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":31,"IsPartOfPartialRun":null,"Comment":"验证训练效果","CommentCollapsed":true},{"Id":"-641","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-641"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-641","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":33,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-648","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-648"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-648","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":35,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-365","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"8","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"he_normal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"L1L2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-365"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-365","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='377,-99,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='192,88,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='776,-191,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='381,305,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1065,-89,200,200'/><NodePosition Node='-106' Position='529,-5,200,200'/><NodePosition Node='-113' Position='529,77,200,200'/><NodePosition Node='-122' Position='1065,29,200,200'/><NodePosition Node='-129' Position='1077,123,200,200'/><NodePosition Node='-141' Position='566,1029,200,200'/><NodePosition Node='-160' Position='-279,-150,200,200'/><NodePosition Node='-1098' Position='135,645,200,200'/><NodePosition Node='-1540' Position='335,814,200,200'/><NodePosition Node='-2431' Position='546,905,200,200'/><NodePosition Node='-768' Position='525,224,200,200'/><NodePosition Node='-773' Position='201,178,200,200'/><NodePosition Node='-778' Position='1084,295,200,200'/><NodePosition Node='-243' Position='386,449,200,200'/><NodePosition Node='-251' Position='1075,472,200,200'/><NodePosition Node='-3880' Position='-135,516,200,200'/><NodePosition Node='-3895' Position='387,528,200,200'/><NodePosition Node='-3907' Position='1067,550,200,200'/><NodePosition Node='-356' Position='-279,-71,200,200'/><NodePosition Node='-273' Position='717,-93,200,200'/><NodePosition Node='-278' Position='529,155,200,200'/><NodePosition Node='-287' Position='1077,223,200,200'/><NodePosition Node='-348' Position='-287,270,200,200'/><NodePosition Node='-328' Position='384,377,200,200'/><NodePosition Node='-344' Position='1081,378,200,200'/><NodePosition Node='-286' Position='-123,769,200,200'/><NodePosition Node='-641' Position='-284,167,200,200'/><NodePosition Node='-648' Position='-282,2,200,200'/><NodePosition Node='-365' Position='-280,71,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [3]:
    # 本代码由可视化策略环境自动生成 2019年11月4日 16:22
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m4_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df =  input_1.read_pickle()
        feature_len = len(input_2.read_pickle()) 
        
        df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))
        flag = int(len(df['y'])/3)
        print("flag:", flag)
        val_x = df['x'][:flag]
        val_y = df['y'][:flag]
        partial_x = df['x'][flag:]
        partial_y = df['y'][flag:]
        val = {'x':val_x, 'y':val_y}
        train = {'x':partial_x, 'y':partial_y}
        
        # 划分2/3训练集和1/3验证集
        data_1 = DataSource.write_pickle(train)
        data_2 = DataSource.write_pickle(val)
        return Outputs(data_1=data_1, data_2=data_2)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m4_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m8_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        df =  input_1.read_pickle()
        feature_len = len(input_2.read_pickle())
        
        
        df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))
        
        data_1 = DataSource.write_pickle(df)
        return Outputs(data_1=data_1)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m8_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m24_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m24_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 30
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.9
        context.options['hold_days'] = 5
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        if context.trading_day_index % 20 != 0:
            return
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m31_run_bigquant_run(input_1):
        import matplotlib.pyplot as plt
        plt.style.use('seaborn')
    
        history = input_1.read()['history']
        loss = history['loss']
        val_loss = history['val_loss']
        mae = history['mean_absolute_error']
        val_mae = history['val_mean_absolute_error']
        epochs = range(1, len(loss) + 1)
    
        plt.figure(1)
        plt.plot(epochs, loss, 'bo', label='Training loss')
        plt.plot(epochs, val_loss, 'b', label='Validation loss')
        plt.title('Training and validation loss')
        plt.xlabel('Epochs')
        plt.ylabel('Loss')
        plt.legend()
        plt.show()
    
        plt.figure(2)
        plt.plot(epochs, mae, 'bo', label='Training mae')
        plt.plot(epochs, val_mae, 'b', label='Validation mae')
        plt.title('Training and validation mean absolute error')
        plt.xlabel('Epochs')
        plt.ylabel('MAE')
        plt.legend()
        plt.show()
        
        return Outputs()
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m31_post_run_bigquant_run(outputs):
        return outputs
    
    
    m1 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2015-01-01'),
        end_date=T.live_run_param('trading_date', '2018-12-31'),
        market='CN_STOCK_A',
        instrument_list=' ',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)-shift(benchmark_close, -5)/shift(benchmark_close, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='2014-01-01',
        end_date='2018-12-31',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False
    )
    
    m13 = M.standardlize.v8(
        input_1=m2.data,
        columns_input='label'
    )
    
    m3 = M.input_features.v1(
        features="""fs_total_operating_costs_0/fs_gross_revenues_0
    pb_lf_0
    fs_net_cash_flow_0/fs_operating_revenue_0
    fs_operating_revenue_qoq_0
    fs_operating_revenue_yoy_0
    fs_roe_0
    market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
    fs_net_cash_flow_0/fs_total_profit_0
    fs_deducted_profit_0/fs_net_income_0
    -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
    sign(delta(volume_0,1))*(-1*delta(close_0,1))
    (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
    -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
    (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
    )
    
    m21 = M.input_features.v1(
        features_ds=m3.data,
        features="""industry_sw_level1_0
    market_cap_float_0"""
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m21.data,
        start_date='2015-01-01',
        end_date='2018-12-31',
        before_start_days=30
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m21.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m22 = M.neutralize.v13(
        input_1=m16.data,
        input_2=m3.data,
        market_value_key=True,
        industry_output_key=True,
        market_col_name='market_cap_float_0',
        industry_sw_col_name='industry_sw_level1_0',
        columns_input="""fs_total_operating_costs_0/fs_gross_revenues_0
    pb_lf_0
    fs_net_cash_flow_0/fs_operating_revenue_0
    fs_operating_revenue_qoq_0
    fs_operating_revenue_yoy_0
    fs_roe_0
    market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
    fs_net_cash_flow_0/fs_total_profit_0
    fs_deducted_profit_0/fs_net_income_0
    -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
    sign(delta(volume_0,1))*(-1*delta(close_0,1))
    (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
    -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
    (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
    )
    
    m14 = M.standardlize.v8(
        input_1=m22.data,
        input_2=m3.data,
        columns_input="""fs_total_operating_costs_0/fs_gross_revenues_0
    pb_lf_0
    fs_net_cash_flow_0/fs_operating_revenue_0
    fs_operating_revenue_qoq_0
    fs_operating_revenue_yoy_0
    fs_roe_0
    market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
    fs_net_cash_flow_0/fs_total_profit_0
    fs_deducted_profit_0/fs_net_income_0
    -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
    sign(delta(volume_0,1))*(-1*delta(close_0,1))
    (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
    -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
    (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
    )
    
    m7 = M.join.v3(
        data1=m13.data,
        data2=m14.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m30 = M.chinaa_stock_filter.v1(
        input_data=m7.data,
        index_constituent_cond=['沪深300'],
        board_cond=['全部'],
        industry_cond=['全部'],
        st_cond=['全部'],
        output_left_data=False
    )
    
    m26 = M.dl_convert_to_bin.v2(
        input_data=m30.data,
        features=m3.data,
        window_size=10,
        feature_clip=11,
        flatten=True,
        window_along_col='instrument'
    )
    
    m4 = M.cached.v3(
        input_1=m26.data,
        input_2=m3.data,
        run=m4_run_bigquant_run,
        post_run=m4_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2018-01-01'),
        end_date=T.live_run_param('trading_date', '2019-08-30'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m21.data,
        start_date='2018-01-01',
        end_date='2019-08-30',
        before_start_days=30
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m21.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m28 = M.neutralize.v13(
        input_1=m18.data,
        input_2=m3.data,
        market_value_key=True,
        industry_output_key=True,
        market_col_name='market_cap_float_0',
        industry_sw_col_name='industry_sw_level1_0',
        columns_input="""fs_total_operating_costs_0/fs_gross_revenues_0
    pb_lf_0
    fs_net_cash_flow_0/fs_operating_revenue_0
    fs_operating_revenue_qoq_0
    fs_operating_revenue_yoy_0
    fs_roe_0
    market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
    fs_net_cash_flow_0/fs_total_profit_0
    fs_deducted_profit_0/fs_net_income_0
    -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
    sign(delta(volume_0,1))*(-1*delta(close_0,1))
    (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
    -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
    (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
    )
    
    m25 = M.standardlize.v8(
        input_1=m28.data,
        input_2=m3.data,
        columns_input="""fs_total_operating_costs_0/fs_gross_revenues_0
    pb_lf_0
    fs_net_cash_flow_0/fs_operating_revenue_0
    fs_operating_revenue_qoq_0
    fs_operating_revenue_yoy_0
    fs_roe_0
    market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
    fs_net_cash_flow_0/fs_total_profit_0
    fs_deducted_profit_0/fs_net_income_0
    -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
    sign(delta(volume_0,1))*(-1*delta(close_0,1))
    (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
    -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
    (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
    )
    
    m32 = M.chinaa_stock_filter.v1(
        input_data=m25.data,
        index_constituent_cond=['沪深300'],
        board_cond=['全部'],
        industry_cond=['全部'],
        st_cond=['全部'],
        output_left_data=False
    )
    
    m27 = M.dl_convert_to_bin.v2(
        input_data=m32.data,
        features=m3.data,
        window_size=10,
        feature_clip=11,
        flatten=True,
        window_along_col='instrument'
    )
    
    m8 = M.cached.v3(
        input_1=m27.data,
        input_2=m3.data,
        run=m8_run_bigquant_run,
        post_run=m8_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m6 = M.dl_layer_input.v1(
        shape='14,10',
        batch_shape='',
        dtype='float32',
        sparse=False,
        name=''
    )
    
    m10 = M.dl_layer_lstm.v1(
        inputs=m6.data,
        units=8,
        activation='tanh',
        recurrent_activation='hard_sigmoid',
        use_bias=True,
        kernel_initializer='he_normal',
        recurrent_initializer='Orthogonal',
        bias_initializer='he_normal',
        unit_forget_bias=True,
        kernel_regularizer='None',
        kernel_regularizer_l1=0.1,
        kernel_regularizer_l2=0.1,
        recurrent_regularizer='None',
        recurrent_regularizer_l1=0,
        recurrent_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='L1L2',
        activity_regularizer_l1=0.1,
        activity_regularizer_l2=0.2,
        kernel_constraint='None',
        recurrent_constraint='None',
        bias_constraint='None',
        return_sequences=True,
        implementation='0',
        name=''
    )
    
    m35 = M.dl_layer_dropout.v1(
        inputs=m10.data,
        rate=0.5,
        noise_shape='',
        name=''
    )
    
    m12 = M.dl_layer_lstm.v1(
        inputs=m35.data,
        units=8,
        activation='tanh',
        recurrent_activation='hard_sigmoid',
        use_bias=True,
        kernel_initializer='he_normal',
        recurrent_initializer='Orthogonal',
        bias_initializer='Zeros',
        unit_forget_bias=True,
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        recurrent_regularizer='L1L2',
        recurrent_regularizer_l1=0.1,
        recurrent_regularizer_l2=0.1,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        recurrent_constraint='None',
        bias_constraint='None',
        return_sequences=False,
        implementation='0',
        name=''
    )
    
    m33 = M.dl_layer_dropout.v1(
        inputs=m12.data,
        rate=0.5,
        noise_shape='',
        name=''
    )
    
    m29 = M.dl_layer_dense.v1(
        inputs=m33.data,
        units=1,
        activation='tanh',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m34 = M.dl_model_init.v1(
        inputs=m6.data,
        outputs=m29.data
    )
    
    m5 = M.dl_model_train.v1(
        input_model=m34.data,
        training_data=m4.data_1,
        validation_data=m4.data_2,
        optimizer='RMSprop',
        loss='mean_squared_error',
        metrics='mae',
        batch_size=100,
        epochs=500,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录'
    )
    
    m11 = M.dl_model_predict.v1(
        trained_model=m5.data,
        input_data=m8.data_1,
        batch_size=100,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录'
    )
    
    m24 = M.cached.v3(
        input_1=m11.data,
        input_2=m32.data,
        run=m24_run_bigquant_run,
        post_run=m24_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m19 = M.trade.v4(
        instruments=m9.data,
        options_data=m24.data_1,
        start_date='',
        end_date='',
        initialize=m19_initialize_bigquant_run,
        handle_data=m19_handle_data_bigquant_run,
        prepare=m19_prepare_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    
    m31 = M.cached.v3(
        input_1=m5.data,
        run=m31_run_bigquant_run,
        post_run=m31_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    

    自定义Python模块(cached)使用错误,你可以:

    1.一键查看文档

    2.一键搜索答案

    构建(深度学习)(dl_model_init)使用错误,你可以:

    1.一键查看文档

    2.一键搜索答案

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-3-a2508324983f> in <module>()
        510 m34 = M.dl_model_init.v1(
        511     inputs=m6.data,
    --> 512     outputs=m29.data
        513 )
        514 
    
    TypeError: data_source_create() got an unexpected keyword argument 'is_datahub'

    (l18058259973) #2

    我今天也是这个错误,以前好好的克隆的策略都出这个问题了,可能是数据获取哪个服务器有问题了


    (达达) #3

    工程师在修复


    (达达) #4

    图建议放到后处理中绘制

    克隆策略

      {"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-106:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-773:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-768:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-778:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-243:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-251:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-3895:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-3907:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-278:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-287:input_2","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-273:features_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-328:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-122:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-141:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-113:input_data","SourceOutputPortId":"-106:data"},{"DestinationInputPortId":"-278:input_1","SourceOutputPortId":"-113:data"},{"DestinationInputPortId":"-129:input_data","SourceOutputPortId":"-122:data"},{"DestinationInputPortId":"-287:input_1","SourceOutputPortId":"-129:data"},{"DestinationInputPortId":"-3880:inputs","SourceOutputPortId":"-160:data"},{"DestinationInputPortId":"-356:inputs","SourceOutputPortId":"-160:data"},{"DestinationInputPortId":"-1540:trained_model","SourceOutputPortId":"-1098:data"},{"DestinationInputPortId":"-286:input_1","SourceOutputPortId":"-1098:data"},{"DestinationInputPortId":"-2431:input_1","SourceOutputPortId":"-1540:data"},{"DestinationInputPortId":"-141:options_data","SourceOutputPortId":"-2431:data_1"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-768:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"-773:data"},{"DestinationInputPortId":"-344:input_data","SourceOutputPortId":"-778:data"},{"DestinationInputPortId":"-3895:input_1","SourceOutputPortId":"-243:data"},{"DestinationInputPortId":"-3907:input_1","SourceOutputPortId":"-251:data"},{"DestinationInputPortId":"-1098:input_model","SourceOutputPortId":"-3880:data"},{"DestinationInputPortId":"-1098:training_data","SourceOutputPortId":"-3895:data_1"},{"DestinationInputPortId":"-1098:validation_data","SourceOutputPortId":"-3895:data_2"},{"DestinationInputPortId":"-1540:input_data","SourceOutputPortId":"-3907:data_1"},{"DestinationInputPortId":"-648:inputs","SourceOutputPortId":"-356:data"},{"DestinationInputPortId":"-106:features","SourceOutputPortId":"-273:data"},{"DestinationInputPortId":"-113:features","SourceOutputPortId":"-273:data"},{"DestinationInputPortId":"-122:features","SourceOutputPortId":"-273:data"},{"DestinationInputPortId":"-129:features","SourceOutputPortId":"-273:data"},{"DestinationInputPortId":"-768:input_1","SourceOutputPortId":"-278:data"},{"DestinationInputPortId":"-778:input_1","SourceOutputPortId":"-287:data"},{"DestinationInputPortId":"-3880:outputs","SourceOutputPortId":"-348:data"},{"DestinationInputPortId":"-243:input_data","SourceOutputPortId":"-328:data"},{"DestinationInputPortId":"-251:input_data","SourceOutputPortId":"-344:data"},{"DestinationInputPortId":"-2431:input_2","SourceOutputPortId":"-344:data"},{"DestinationInputPortId":"-348:inputs","SourceOutputPortId":"-641:data"},{"DestinationInputPortId":"-365:inputs","SourceOutputPortId":"-648:data"},{"DestinationInputPortId":"-641:inputs","SourceOutputPortId":"-365:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2018-12-31","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":" ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-shift(benchmark_close, -5)/shift(benchmark_close, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"2014-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2019-08-30","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-106","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2018-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"30","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-106"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-106"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-106","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-113","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-113"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-113"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-113","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-122","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-08-30","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"30","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-122"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-122"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-122","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-129","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-129"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-129"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-129","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-141","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 30\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.9\n context.options['hold_days'] = 5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n if context.trading_day_index % 20 != 0:\n return\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-141"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-141"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-141","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-160","ModuleId":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","ModuleParameters":[{"Name":"shape","Value":"14,10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dtype","Value":"float32","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sparse","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-160"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-160","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1098","ModuleId":"BigQuantSpace.dl_model_train.dl_model_train-v1","ModuleParameters":[{"Name":"optimizer","Value":"RMSprop","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_optimizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"loss","Value":"mean_squared_error","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_loss","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"metrics","Value":"mae","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"batch_size","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"epochs","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"2:每个epoch输出一行记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-1098"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_data","NodeId":"-1098"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"validation_data","NodeId":"-1098"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1098","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1540","ModuleId":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","ModuleParameters":[{"Name":"batch_size","Value":"100","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"n_gpus","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"verbose","Value":"2:每个epoch输出一行记录","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trained_model","NodeId":"-1540"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1540"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1540","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2431","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-2431"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-2431"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-2431"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-2431","OutputType":null},{"Name":"data_2","NodeId":"-2431","OutputType":null},{"Name":"data_3","NodeId":"-2431","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-768","ModuleId":"BigQuantSpace.standardlize.standardlize-v8","ModuleParameters":[{"Name":"columns_input","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-768"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-768"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-768","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-773","ModuleId":"BigQuantSpace.standardlize.standardlize-v8","ModuleParameters":[{"Name":"columns_input","Value":"label","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-773"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-773"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-773","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-778","ModuleId":"BigQuantSpace.standardlize.standardlize-v8","ModuleParameters":[{"Name":"columns_input","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-778"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-778"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-778","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":25,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-243","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":"11","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-243"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-243"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-243","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":26,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-251","ModuleId":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","ModuleParameters":[{"Name":"window_size","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_clip","Value":"11","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"flatten","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"window_along_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-251"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-251"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-251","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":27,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3880","ModuleId":"BigQuantSpace.dl_model_init.dl_model_init-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-3880"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"outputs","NodeId":"-3880"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-3880","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":34,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3895","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_pickle()\n feature_len = len(input_2.read_pickle()) \n \n df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))\n flag = int(len(df['y'])/3)\n print(\"flag:\", flag)\n val_x = df['x'][:flag]\n val_y = df['y'][:flag]\n partial_x = df['x'][flag:]\n partial_y = df['y'][flag:]\n val = {'x':val_x, 'y':val_y}\n train = {'x':partial_x, 'y':partial_y}\n \n # 划分2/3训练集和1/3验证集\n data_1 = DataSource.write_pickle(train)\n data_2 = DataSource.write_pickle(val)\n return Outputs(data_1=data_1, data_2=data_2)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-3895"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-3895"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-3895"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-3895","OutputType":null},{"Name":"data_2","NodeId":"-3895","OutputType":null},{"Name":"data_3","NodeId":"-3895","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-3907","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_pickle()\n feature_len = len(input_2.read_pickle())\n \n \n df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))\n \n data_1 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-3907"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-3907"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-3907"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-3907","OutputType":null},{"Name":"data_2","NodeId":"-3907","OutputType":null},{"Name":"data_3","NodeId":"-3907","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-356","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"8","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"he_normal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"he_normal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"L1L2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":"0.2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-356"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-356","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-273","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"industry_sw_level1_0\nmarket_cap_float_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-273"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-273","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-278","ModuleId":"BigQuantSpace.neutralize.neutralize-v13","ModuleParameters":[{"Name":"market_value_key","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_output_key","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market_col_name","Value":"market_cap_float_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_sw_col_name","Value":"industry_sw_level1_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"columns_input","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-278"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-278"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-278","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-287","ModuleId":"BigQuantSpace.neutralize.neutralize-v13","ModuleParameters":[{"Name":"market_value_key","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_output_key","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market_col_name","Value":"market_cap_float_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_sw_col_name","Value":"industry_sw_level1_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"columns_input","Value":"fs_total_operating_costs_0/fs_gross_revenues_0\npb_lf_0\nfs_net_cash_flow_0/fs_operating_revenue_0\nfs_operating_revenue_qoq_0\nfs_operating_revenue_yoy_0\nfs_roe_0\nmarket_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)\nfs_net_cash_flow_0/fs_total_profit_0\nfs_deducted_profit_0/fs_net_income_0\n-1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)\nsign(delta(volume_0,1))*(-1*delta(close_0,1))\n(-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)\n-1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)\n(ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-287"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-287"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-287","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-348","ModuleId":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","ModuleParameters":[{"Name":"units","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"glorot_uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-348"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-348","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":29,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-328","ModuleId":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","ModuleParameters":[{"Name":"index_constituent_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"board_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"st_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-328"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-328","OutputType":null},{"Name":"left_data","NodeId":"-328","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":30,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-344","ModuleId":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","ModuleParameters":[{"Name":"index_constituent_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"board_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"industry_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"st_cond","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_left_data","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-344"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-344","OutputType":null},{"Name":"left_data","NodeId":"-344","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":32,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-286","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1):\n import matplotlib.pyplot as plt\n plt.style.use('seaborn')\n\n history = input_1.read()['history']\n loss = history['loss']\n val_loss = history['val_loss']\n mae = history['mean_absolute_error']\n val_mae = history['val_mean_absolute_error']\n epochs = range(1, len(loss) + 1)\n\n plt.figure(1)\n plt.plot(epochs, loss, 'bo', label='Training loss')\n plt.plot(epochs, val_loss, 'b', label='Validation loss')\n plt.title('Training and validation loss')\n plt.xlabel('Epochs')\n plt.ylabel('Loss')\n plt.legend()\n plt.show()\n\n plt.figure(2)\n plt.plot(epochs, mae, 'bo', label='Training mae')\n plt.plot(epochs, val_mae, 'b', label='Validation mae')\n plt.title('Training and validation mean absolute error')\n plt.xlabel('Epochs')\n plt.ylabel('MAE')\n plt.legend()\n plt.show()\n \n return Outputs()\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-286"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-286"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-286"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-286","OutputType":null},{"Name":"data_2","NodeId":"-286","OutputType":null},{"Name":"data_3","NodeId":"-286","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":31,"IsPartOfPartialRun":null,"Comment":"验证训练效果","CommentCollapsed":true},{"Id":"-641","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-641"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-641","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":33,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-648","ModuleId":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","ModuleParameters":[{"Name":"rate","Value":"0.5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"noise_shape","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"seed","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-648"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-648","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":35,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-365","ModuleId":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","ModuleParameters":[{"Name":"units","Value":"8","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activation","Value":"tanh","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_activation","Value":"hard_sigmoid","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_activation","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"use_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_initializer","Value":"he_normal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_initializer","Value":"Orthogonal","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_initializer","Value":"Zeros","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_initializer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"unit_forget_bias","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l1","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_regularizer_l2","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer","Value":"L1L2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l1","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_regularizer_l2","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l1","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_regularizer_l2","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l1","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"activity_regularizer_l2","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_activity_regularizer","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"kernel_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_kernel_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_recurrent_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bias_constraint","Value":"None","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_bias_constraint","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"dropout","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"recurrent_dropout","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"return_sequences","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"implementation","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"name","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"inputs","NodeId":"-365"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-365","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='377,-99,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='192,88,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='776,-191,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='381,305,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1065,-89,200,200'/><NodePosition Node='-106' Position='529,-5,200,200'/><NodePosition Node='-113' Position='529,77,200,200'/><NodePosition Node='-122' Position='1065,29,200,200'/><NodePosition Node='-129' Position='1077,123,200,200'/><NodePosition Node='-141' Position='566,1029,200,200'/><NodePosition Node='-160' Position='-279,-150,200,200'/><NodePosition Node='-1098' Position='135,645,200,200'/><NodePosition Node='-1540' Position='335,814,200,200'/><NodePosition Node='-2431' Position='546,905,200,200'/><NodePosition Node='-768' Position='525,224,200,200'/><NodePosition Node='-773' Position='201,178,200,200'/><NodePosition Node='-778' Position='1084,295,200,200'/><NodePosition Node='-243' Position='386,449,200,200'/><NodePosition Node='-251' Position='1075,472,200,200'/><NodePosition Node='-3880' Position='-135,516,200,200'/><NodePosition Node='-3895' Position='387,528,200,200'/><NodePosition Node='-3907' Position='1067,550,200,200'/><NodePosition Node='-356' Position='-279,-71,200,200'/><NodePosition Node='-273' Position='717,-93,200,200'/><NodePosition Node='-278' Position='529,155,200,200'/><NodePosition Node='-287' Position='1077,223,200,200'/><NodePosition Node='-348' Position='-287,270,200,200'/><NodePosition Node='-328' Position='384,377,200,200'/><NodePosition Node='-344' Position='1081,378,200,200'/><NodePosition Node='-286' Position='-123,769,200,200'/><NodePosition Node='-641' Position='-284,167,200,200'/><NodePosition Node='-648' Position='-282,2,200,200'/><NodePosition Node='-365' Position='-280,71,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
      In [2]:
      # 本代码由可视化策略环境自动生成 2019年11月4日 17:00
      # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
      
      
      # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
      def m4_run_bigquant_run(input_1, input_2, input_3):
          # 示例代码如下。在这里编写您的代码
          df =  input_1.read_pickle()
          feature_len = len(input_2.read_pickle()) 
          
          df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))
          flag = int(len(df['y'])/3)
          print("flag:", flag)
          val_x = df['x'][:flag]
          val_y = df['y'][:flag]
          partial_x = df['x'][flag:]
          partial_y = df['y'][flag:]
          val = {'x':val_x, 'y':val_y}
          train = {'x':partial_x, 'y':partial_y}
          
          # 划分2/3训练集和1/3验证集
          data_1 = DataSource.write_pickle(train)
          data_2 = DataSource.write_pickle(val)
          return Outputs(data_1=data_1, data_2=data_2)
      
      # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
      def m4_post_run_bigquant_run(outputs):
          return outputs
      
      # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
      def m8_run_bigquant_run(input_1, input_2, input_3):
          # 示例代码如下。在这里编写您的代码
          df =  input_1.read_pickle()
          feature_len = len(input_2.read_pickle())
          
          
          df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))
          
          data_1 = DataSource.write_pickle(df)
          return Outputs(data_1=data_1)
      
      # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
      def m8_post_run_bigquant_run(outputs):
          return outputs
      
      # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
      def m24_run_bigquant_run(input_1, input_2, input_3):
          # 示例代码如下。在这里编写您的代码
          pred_label = input_1.read_pickle()
          df = input_2.read_df()
          df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
          df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
          return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
      
      # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
      def m24_post_run_bigquant_run(outputs):
          return outputs
      
      # 回测引擎:初始化函数,只执行一次
      def m19_initialize_bigquant_run(context):
          # 加载预测数据
          context.ranker_prediction = context.options['data'].read_df()
      
          # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
          context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
          # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
          # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
          stock_count = 30
          # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
          context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
          # 设置每只股票占用的最大资金比例
          context.max_cash_per_instrument = 0.9
          context.options['hold_days'] = 5
      # 回测引擎:每日数据处理函数,每天执行一次
      def m19_handle_data_bigquant_run(context, data):
          if context.trading_day_index % 20 != 0:
              return
          # 按日期过滤得到今日的预测数据
          ranker_prediction = context.ranker_prediction[
              context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
      
          # 1. 资金分配
          # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
          # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
          is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
          cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
          cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
          cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
          positions = {e.symbol: p.amount * p.last_sale_price
                       for e, p in context.perf_tracker.position_tracker.positions.items()}
      
          # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
          if not is_staging and cash_for_sell > 0:
              equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
              instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                      lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
              # print('rank order for sell %s' % instruments)
              for instrument in instruments:
                  context.order_target(context.symbol(instrument), 0)
                  cash_for_sell -= positions[instrument]
                  if cash_for_sell <= 0:
                      break
      
          # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
          buy_cash_weights = context.stock_weights
          buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
          max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
          for i, instrument in enumerate(buy_instruments):
              cash = cash_for_buy * buy_cash_weights[i]
              if cash > max_cash_per_instrument - positions.get(instrument, 0):
                  # 确保股票持仓量不会超过每次股票最大的占用资金量
                  cash = max_cash_per_instrument - positions.get(instrument, 0)
              if cash > 0:
                  context.order_value(context.symbol(instrument), cash)
      
      # 回测引擎:准备数据,只执行一次
      def m19_prepare_bigquant_run(context):
          pass
      
      # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
      def m31_run_bigquant_run(input_1):
          import matplotlib.pyplot as plt
          plt.style.use('seaborn')
      
          history = input_1.read()['history']
          loss = history['loss']
          val_loss = history['val_loss']
          mae = history['mean_absolute_error']
          val_mae = history['val_mean_absolute_error']
          epochs = range(1, len(loss) + 1)
      
          plt.figure(1)
          plt.plot(epochs, loss, 'bo', label='Training loss')
          plt.plot(epochs, val_loss, 'b', label='Validation loss')
          plt.title('Training and validation loss')
          plt.xlabel('Epochs')
          plt.ylabel('Loss')
          plt.legend()
          plt.show()
      
          plt.figure(2)
          plt.plot(epochs, mae, 'bo', label='Training mae')
          plt.plot(epochs, val_mae, 'b', label='Validation mae')
          plt.title('Training and validation mean absolute error')
          plt.xlabel('Epochs')
          plt.ylabel('MAE')
          plt.legend()
          plt.show()
          
          return Outputs()
      
      # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
      def m31_post_run_bigquant_run(outputs):
          return outputs
      
      
      m1 = M.instruments.v2(
          start_date=T.live_run_param('trading_date', '2015-01-01'),
          end_date=T.live_run_param('trading_date', '2018-12-31'),
          market='CN_STOCK_A',
          instrument_list=' ',
          max_count=0
      )
      
      m2 = M.advanced_auto_labeler.v2(
          instruments=m1.data,
          label_expr="""# #号开始的表示注释
      # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
      # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
      #   添加benchmark_前缀,可使用对应的benchmark数据
      # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
      
      # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
      shift(close, -5) / shift(open, -1)-shift(benchmark_close, -5)/shift(benchmark_close, -1)
      
      # 极值处理:用1%和99%分位的值做clip
      clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
      
      # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
      where(shift(high, -1) == shift(low, -1), NaN, label)
      """,
          start_date='2014-01-01',
          end_date='2018-12-31',
          benchmark='000300.SHA',
          drop_na_label=True,
          cast_label_int=False
      )
      
      m13 = M.standardlize.v8(
          input_1=m2.data,
          columns_input='label'
      )
      
      m3 = M.input_features.v1(
          features="""fs_total_operating_costs_0/fs_gross_revenues_0
      pb_lf_0
      fs_net_cash_flow_0/fs_operating_revenue_0
      fs_operating_revenue_qoq_0
      fs_operating_revenue_yoy_0
      fs_roe_0
      market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
      fs_net_cash_flow_0/fs_total_profit_0
      fs_deducted_profit_0/fs_net_income_0
      -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
      sign(delta(volume_0,1))*(-1*delta(close_0,1))
      (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
      -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
      (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
      )
      
      m21 = M.input_features.v1(
          features_ds=m3.data,
          features="""industry_sw_level1_0
      market_cap_float_0"""
      )
      
      m15 = M.general_feature_extractor.v7(
          instruments=m1.data,
          features=m21.data,
          start_date='2015-01-01',
          end_date='2018-12-31',
          before_start_days=30
      )
      
      m16 = M.derived_feature_extractor.v3(
          input_data=m15.data,
          features=m21.data,
          date_col='date',
          instrument_col='instrument',
          drop_na=True,
          remove_extra_columns=False
      )
      
      m22 = M.neutralize.v13(
          input_1=m16.data,
          input_2=m3.data,
          market_value_key=True,
          industry_output_key=True,
          market_col_name='market_cap_float_0',
          industry_sw_col_name='industry_sw_level1_0',
          columns_input="""fs_total_operating_costs_0/fs_gross_revenues_0
      pb_lf_0
      fs_net_cash_flow_0/fs_operating_revenue_0
      fs_operating_revenue_qoq_0
      fs_operating_revenue_yoy_0
      fs_roe_0
      market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
      fs_net_cash_flow_0/fs_total_profit_0
      fs_deducted_profit_0/fs_net_income_0
      -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
      sign(delta(volume_0,1))*(-1*delta(close_0,1))
      (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
      -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
      (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
      )
      
      m14 = M.standardlize.v8(
          input_1=m22.data,
          input_2=m3.data,
          columns_input="""fs_total_operating_costs_0/fs_gross_revenues_0
      pb_lf_0
      fs_net_cash_flow_0/fs_operating_revenue_0
      fs_operating_revenue_qoq_0
      fs_operating_revenue_yoy_0
      fs_roe_0
      market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
      fs_net_cash_flow_0/fs_total_profit_0
      fs_deducted_profit_0/fs_net_income_0
      -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
      sign(delta(volume_0,1))*(-1*delta(close_0,1))
      (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
      -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
      (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
      )
      
      m7 = M.join.v3(
          data1=m13.data,
          data2=m14.data,
          on='date,instrument',
          how='inner',
          sort=False
      )
      
      m30 = M.chinaa_stock_filter.v1(
          input_data=m7.data,
          index_constituent_cond=['沪深300'],
          board_cond=['全部'],
          industry_cond=['全部'],
          st_cond=['全部'],
          output_left_data=False
      )
      
      m26 = M.dl_convert_to_bin.v2(
          input_data=m30.data,
          features=m3.data,
          window_size=10,
          feature_clip=11,
          flatten=True,
          window_along_col='instrument'
      )
      
      m4 = M.cached.v3(
          input_1=m26.data,
          input_2=m3.data,
          run=m4_run_bigquant_run,
          post_run=m4_post_run_bigquant_run,
          input_ports='',
          params='{}',
          output_ports=''
      )
      
      m9 = M.instruments.v2(
          start_date=T.live_run_param('trading_date', '2018-01-01'),
          end_date=T.live_run_param('trading_date', '2019-08-30'),
          market='CN_STOCK_A',
          instrument_list='',
          max_count=0
      )
      
      m17 = M.general_feature_extractor.v7(
          instruments=m9.data,
          features=m21.data,
          start_date='2018-01-01',
          end_date='2019-08-30',
          before_start_days=30
      )
      
      m18 = M.derived_feature_extractor.v3(
          input_data=m17.data,
          features=m21.data,
          date_col='date',
          instrument_col='instrument',
          drop_na=True,
          remove_extra_columns=False
      )
      
      m28 = M.neutralize.v13(
          input_1=m18.data,
          input_2=m3.data,
          market_value_key=True,
          industry_output_key=True,
          market_col_name='market_cap_float_0',
          industry_sw_col_name='industry_sw_level1_0',
          columns_input="""fs_total_operating_costs_0/fs_gross_revenues_0
      pb_lf_0
      fs_net_cash_flow_0/fs_operating_revenue_0
      fs_operating_revenue_qoq_0
      fs_operating_revenue_yoy_0
      fs_roe_0
      market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
      fs_net_cash_flow_0/fs_total_profit_0
      fs_deducted_profit_0/fs_net_income_0
      -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
      sign(delta(volume_0,1))*(-1*delta(close_0,1))
      (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
      -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
      (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
      )
      
      m25 = M.standardlize.v8(
          input_1=m28.data,
          input_2=m3.data,
          columns_input="""fs_total_operating_costs_0/fs_gross_revenues_0
      pb_lf_0
      fs_net_cash_flow_0/fs_operating_revenue_0
      fs_operating_revenue_qoq_0
      fs_operating_revenue_yoy_0
      fs_roe_0
      market_cap_0/(fs_net_income_0+fs_income_tax_0+fs_fixed_assets_disp_0)
      fs_net_cash_flow_0/fs_total_profit_0
      fs_deducted_profit_0/fs_net_income_0
      -1*correlation(rank(delta(log(volume_0),2)),rank(((close_0-open_0)/open_0)),6)
      sign(delta(volume_0,1))*(-1*delta(close_0,1))
      (-1*rank(delta(close_0/shift(close_0,1)-1,3)))*correlation(open_0,volume_0,10)
      -1*sum(rank(correlation(rank(high_0),rank(volume_0),3)),3)
      (ts_rank((volume_0/mean(amount_0,20)),20)*ts_rank((-1*delta(close_0,7)),8))"""
      )
      
      m32 = M.chinaa_stock_filter.v1(
          input_data=m25.data,
          index_constituent_cond=['沪深300'],
          board_cond=['全部'],
          industry_cond=['全部'],
          st_cond=['全部'],
          output_left_data=False
      )
      
      m27 = M.dl_convert_to_bin.v2(
          input_data=m32.data,
          features=m3.data,
          window_size=10,
          feature_clip=11,
          flatten=True,
          window_along_col='instrument'
      )
      
      m8 = M.cached.v3(
          input_1=m27.data,
          input_2=m3.data,
          run=m8_run_bigquant_run,
          post_run=m8_post_run_bigquant_run,
          input_ports='',
          params='{}',
          output_ports=''
      )
      
      m6 = M.dl_layer_input.v1(
          shape='14,10',
          batch_shape='',
          dtype='float32',
          sparse=False,
          name=''
      )
      
      m10 = M.dl_layer_lstm.v1(
          inputs=m6.data,
          units=8,
          activation='tanh',
          recurrent_activation='hard_sigmoid',
          use_bias=True,
          kernel_initializer='he_normal',
          recurrent_initializer='Orthogonal',
          bias_initializer='he_normal',
          unit_forget_bias=True,
          kernel_regularizer='None',
          kernel_regularizer_l1=0.1,
          kernel_regularizer_l2=0.1,
          recurrent_regularizer='None',
          recurrent_regularizer_l1=0,
          recurrent_regularizer_l2=0,
          bias_regularizer='None',
          bias_regularizer_l1=0,
          bias_regularizer_l2=0,
          activity_regularizer='L1L2',
          activity_regularizer_l1=0.1,
          activity_regularizer_l2=0.2,
          kernel_constraint='None',
          recurrent_constraint='None',
          bias_constraint='None',
          return_sequences=True,
          implementation='0',
          name=''
      )
      
      m35 = M.dl_layer_dropout.v1(
          inputs=m10.data,
          rate=0.5,
          noise_shape='',
          name=''
      )
      
      m12 = M.dl_layer_lstm.v1(
          inputs=m35.data,
          units=8,
          activation='tanh',
          recurrent_activation='hard_sigmoid',
          use_bias=True,
          kernel_initializer='he_normal',
          recurrent_initializer='Orthogonal',
          bias_initializer='Zeros',
          unit_forget_bias=True,
          kernel_regularizer='None',
          kernel_regularizer_l1=0,
          kernel_regularizer_l2=0,
          recurrent_regularizer='L1L2',
          recurrent_regularizer_l1=0.1,
          recurrent_regularizer_l2=0.1,
          bias_regularizer='None',
          bias_regularizer_l1=0,
          bias_regularizer_l2=0,
          activity_regularizer='None',
          activity_regularizer_l1=0,
          activity_regularizer_l2=0,
          kernel_constraint='None',
          recurrent_constraint='None',
          bias_constraint='None',
          return_sequences=False,
          implementation='0',
          name=''
      )
      
      m33 = M.dl_layer_dropout.v1(
          inputs=m12.data,
          rate=0.5,
          noise_shape='',
          name=''
      )
      
      m29 = M.dl_layer_dense.v1(
          inputs=m33.data,
          units=1,
          activation='tanh',
          use_bias=True,
          kernel_initializer='glorot_uniform',
          bias_initializer='Zeros',
          kernel_regularizer='None',
          kernel_regularizer_l1=0,
          kernel_regularizer_l2=0,
          bias_regularizer='None',
          bias_regularizer_l1=0,
          bias_regularizer_l2=0,
          activity_regularizer='None',
          activity_regularizer_l1=0,
          activity_regularizer_l2=0,
          kernel_constraint='None',
          bias_constraint='None',
          name=''
      )
      
      m34 = M.dl_model_init.v1(
          inputs=m6.data,
          outputs=m29.data
      )
      
      m5 = M.dl_model_train.v1(
          input_model=m34.data,
          training_data=m4.data_1,
          validation_data=m4.data_2,
          optimizer='RMSprop',
          loss='mean_squared_error',
          metrics='mae',
          batch_size=100,
          epochs=10,
          n_gpus=0,
          verbose='2:每个epoch输出一行记录'
      )
      
      m11 = M.dl_model_predict.v1(
          trained_model=m5.data,
          input_data=m8.data_1,
          batch_size=100,
          n_gpus=0,
          verbose='2:每个epoch输出一行记录'
      )
      
      m24 = M.cached.v3(
          input_1=m11.data,
          input_2=m32.data,
          run=m24_run_bigquant_run,
          post_run=m24_post_run_bigquant_run,
          input_ports='',
          params='{}',
          output_ports=''
      )
      
      m19 = M.trade.v4(
          instruments=m9.data,
          options_data=m24.data_1,
          start_date='',
          end_date='',
          initialize=m19_initialize_bigquant_run,
          handle_data=m19_handle_data_bigquant_run,
          prepare=m19_prepare_bigquant_run,
          volume_limit=0.025,
          order_price_field_buy='open',
          order_price_field_sell='close',
          capital_base=1000000,
          auto_cancel_non_tradable_orders=True,
          data_frequency='daily',
          price_type='后复权',
          product_type='股票',
          plot_charts=True,
          backtest_only=False,
          benchmark='000300.SHA'
      )
      
      m31 = M.cached.v3(
          input_1=m5.data,
          run=m31_run_bigquant_run,
          post_run=m31_post_run_bigquant_run,
          input_ports='',
          params='{}',
          output_ports=''
      )
      
      Train on 32875 samples, validate on 16437 samples
      Epoch 1/10
       - 20s - loss: 233.3801 - mean_absolute_error: 0.6317 - val_loss: 107.2709 - val_mean_absolute_error: 0.7170
      Epoch 2/10
       - 16s - loss: 58.7455 - mean_absolute_error: 0.6212 - val_loss: 26.9405 - val_mean_absolute_error: 0.7229
      Epoch 3/10
       - 19s - loss: 13.1659 - mean_absolute_error: 0.6216 - val_loss: 5.2871 - val_mean_absolute_error: 0.7165
      Epoch 4/10
       - 17s - loss: 2.0440 - mean_absolute_error: 0.6216 - val_loss: 0.8834 - val_mean_absolute_error: 0.7170
      Epoch 5/10
       - 17s - loss: 0.7543 - mean_absolute_error: 0.6211 - val_loss: 0.8655 - val_mean_absolute_error: 0.7214
      Epoch 6/10
       - 17s - loss: 0.7333 - mean_absolute_error: 0.6215 - val_loss: 0.8488 - val_mean_absolute_error: 0.7153
      Epoch 7/10
       - 16s - loss: 0.7237 - mean_absolute_error: 0.6210 - val_loss: 0.8513 - val_mean_absolute_error: 0.7208
      Epoch 8/10
       - 17s - loss: 0.7199 - mean_absolute_error: 0.6214 - val_loss: 0.8459 - val_mean_absolute_error: 0.7168
      Epoch 9/10
       - 16s - loss: 0.7189 - mean_absolute_error: 0.6212 - val_loss: 0.8469 - val_mean_absolute_error: 0.7180
      Epoch 10/10
       - 16s - loss: 0.7188 - mean_absolute_error: 0.6211 - val_loss: 0.8471 - val_mean_absolute_error: 0.7182
      
      DataSource(468c18d86bf34d0481c4d66fc61bae72T, v3)
      
      • 收益率6.44%
      • 年化收益率3.95%
      • 基准收益率-5.74%
      • 阿尔法0.06
      • 贝塔0.73
      • 夏普比率0.14
      • 胜率0.42
      • 盈亏比2.21
      • 收益波动率18.18%
      • 信息比率0.04
      • 最大回撤22.49%
      bigcharts-data-start/{"__type":"tabs","__id":"bigchart-12f3764afb7e45188ef9fc9d11bec5ca"}/bigcharts-data-end
      <Figure size 800x550 with 1 Axes>
      <Figure size 800x550 with 1 Axes>