历史文档

【历史文档】算子样例-超参寻优使用简介

由clearyf创建,最终由small_q 被浏览 675 用户

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平台:

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

新版表达式算子:

https://bigquant.com/wiki/doc/dai-sql-Rceb2JQBdS

新版因子平台:

https://bigquant.com/wiki/doc/bigalpha-EOVmVtJMS5

\

旧版声明

本文为旧版实现,供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

导语

在机器学习模型建立过程中通常需要对模型中的超参数进行优化,本文给大家介绍超参优化模块,它可以帮助大家对我们平台上的机器学习模型进行超参数优化,让你的收益更上一层楼

超参寻优理论简介

在机器学习里,我们本质上是对损失函数进行最优化的过程。

过程类似下面的曲面,算法试图去寻找损失曲面的全局最小值,当然损失曲面实际中不一定是凸曲面, 可能会更加凹凸不平,存在多个局部高低点。

{w:100}{w:100}我们还是回到主题,讲述的重点在于超参数寻优的意义。当我们损失曲面给定的时候,我们寻找最优点的路径可能会有一些模型以为的超参数来确定。形象的比喻, 如下图,不同的超参数可能对应这一条不同的寻优路径,比如当我们控制学习率的时候,模型每一步权重更新的步长就会不一样,这样可能导致寻优路径产生根本的差异, 尤其是在高维空间下。

{w:100}{w:100}

模块使用介绍

在介绍了超参优化的原理后,就来介绍我们提供的超参寻优模块工具。

首先打开可视化策略,然后在左边的高级优化下面找到超参搜索,并把它拖进来:

{w:100}{w:100}单击模块后,我们能够在右边看到模块的属性,包括:

超参数输入:

在这里构造参数搜索空间。在超参数输入里,我们只需要指定需要调优的参数名,已经参数的搜索空间就ok了,下面给出了示例:

def bigquant_run():
    param_grid = {}

    # 在这里设置需要调优的参数备选
    param_grid['m6.number_of_trees'] = [5, 10, 20]

    return param_grid

切换到代码模式,可以参考所有可以调优的参数,甚至包括算法和算法的版本都可以修改。

{w:100}{w:100} 图2{w:100}{w:100}评分函数:

评分函数是用来评价一组参数好坏的指标,下面我们给出了一个示例,以回测最终的夏普比作为评分函数:

def bigquant_run(result):

    score = result.get('m19').read_raw_perf()['sharpe'].tail(1)[0]

    return score

参数搜索算法:

参数搜索算法有两个可选项:

  • 网格搜索
  • 随机搜索

网格搜索是指给定参数组合后,遍历所有的排列组合。随机搜索指的是每次从所有的排列组合中,随机抽出一组参数,在具有很多参数的情况下,随机搜索会更有效率。

**搜索迭代次数:**在随机搜索的情况下,最多迭代的次数。

**并行运行作业数:**指用多少个线程同时搜索所有参数空间。

策略案例

提示:超参搜索属于高级优化模块,其调用的是整个可视化画布,因此不能单独运行该模块,而是 点击 运行全部。

https://bigquant.com/experimentshare/57d7f8ea10ce421291eaeace26eeccb6

超參寻优,寻找trade模块里面的参数案例。

https://bigquant.com/experimentshare/5e8e4afc7b284a0ebf2b71247e090d91

\

标签

损失函数
评论
  • 老师,超参寻优模块,都能对哪些参数寻优?寻完优以后怎么用?
{link}