机器学习:18-滚动训练-线性回归

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/66c560a3-335b-407c-aa2f-7053322141f

由small_q创建,最终由small_q更新于

机器学习:17-LSTM

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

**策略源码

由small_q创建,最终由small_q更新于

机器学习:16-CNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/ccbddd56-eddd-4a7f-95e2-88e8a0432a3

由small_q创建,最终由small_q更新于

机器学习:15-DNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

**策略

由small_q创建,最终由small_q更新于

机器学习:14-XGBoost

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:



\

由small_q创建,最终由small_q更新于

机器学习:13-AdaBoost

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:



**策略源

由small_q创建,最终由small_q更新于

机器学习:12-随机森林

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

**策略

由small_q创建,最终由small_q更新于

机器学习:11-感知机

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==

回测图:

\

**策略源码

由small_q创建,最终由small_q更新于

机器学习:10-朴素贝叶斯

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

**策略

由small_q创建,最终由small_q更新于

机器学习:9-KNN

  • 运行环境:AIStudio 3.0

  • 机器学习:KNN算法

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

![](/wiki/api/attachments.redirect?id=aa129740-493a-4361-871d-1d099144d01

由small_q创建,最终由small_q更新于

机器学习:8-SVM

  • 运行环境:AIStudio 3.0
  • 机器学习:8-SVM
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

由small_q创建,最终由small_q更新于

机器学习:7-弹性网络

  • 运行环境:AIStudio 3.0.0
  • 机器学习:弹性网络
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

![](/wiki/api/attachments.redirect?id=2e32e3a6-d013-4a47-9152-dc60940db1ef

由small_q创建,最终由small_q更新于

机器学习:6-索套回归

  • 运行环境:AIStudio 3.0.0
  • 机器学习:索套回归
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

![](/wiki/api/attachments.redirect?id=ee3ca159-7cf7-4c9d-8f67-95d21c2d0ff3

由small_q创建,最终由small_q更新于

机器学习:5-岭回归

  • 运行环境:AIStudio 3.0.0
  • 机器学习:岭回归策略
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

![](/wiki/api/attachments.redirect?id=636b6556-d556-48aa-a744-7ef08b2f129

由small_q创建,最终由small_q更新于

机器学习:4-线性回归构建因子

  • 运行环境:AIStudio 3.0.0
  • 线性回归:构建因子+单因子策略回测
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

![](/wiki/api/attachments.redirect?id=35fe3907-24a2-4771-888f-5919

由small_q创建,最终由small_q更新于

机器学习:3-逻辑回归预测上涨概率

  • 运行环境:AIStudio 3.0.0
  • 机器学习:逻辑回归策略:预测上涨概率
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

![](/wiki/api/attachments.redirect?id=6a6ce99b-4c31-41d7-83fb-bfc

由small_q创建,最终由small_q更新于

机器学习:2-线性回归预测上涨概率

  • 运行环境:AIStudio 3.0.0
  • 机器学习:线性回归策略:预测上涨概率
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

![](/wiki/api/attachments.redirect?id=b524674e-1dd7-4807-a2a1-506

由small_q创建,最终由small_q更新于

机器学习:1-线性回归预测收益

  • 运行环境:AIStudio 3.0.0
  • 机器学习:线性回归策略:预测收益
  • 策略说明:本代码以教学目的为主,请自行调参


回测图:

![](/wiki/api/attachments.redirect?id=7d999db6-eec5-4e3a-b613-ff21ae9ce

由small_q创建,最终由small_q更新于

高频因子构建:4、进阶玩法之存中介表优化窗口函数性能

高频因子加工,本质上就是将日内的高频信息降频为日频,有些因子在降频为日频后,还要向前取移动平均,例如5日、20日

以20日移动平均为例,一个低效率的方式是,加工高频因子时,取数据就多取20天的,以一天5000只票240分钟为例,这种取数据就要取到5000 X 240 X 20 = 24,000,0

由small_q创建,最终由small_q更新于

高频因子构建:3、进阶玩法之边加工边存表

我们以加工,全天内不同时间段内的成交量占全天成交量之比,这一系列因子为例,演示加工历史数据时,表加工边存表的方式

这种方式是为了防止加工时系统崩溃后,可以从断点继续运行


\

策略源码:

{{membership}}

[https://bigquant.com/codesha

由small_q创建,最终由small_q更新于

高频因子构建:2、多只票一天的加工方式

本文档,我们会总结一些典型的高频因子,加工方式为“多只票,一天”

这种因子通常是加工时有截面运算的需求,所以必须获取全市场股票的信息

提示:加工高频因子最好将资源开大,否则Kernel容易崩溃


1. 交易量截面百分比排序的方差、偏度、峰度

2. 交易量截面百分比排序方差偏度峰度的市值

由small_q创建,最终由small_q更新于

高频因子构建:1、一只票多天的加工方式

本文档,我们会总结一些典型的高频因子,加工方式为“一只票,多天”

这种因子的加工时通常不需要截面运算,因此不需要获取其他股票的信息

提示:加工高频因子最好将资源开大,否则Kernel容易崩溃

\

1. 全天内不同时间段内的成交量占全天成交量之比

  • 时间段01:09:30-

由small_q创建,最终由small_q更新于

低频因子构建:Alpha191因子构建(10)

策略源码:

{{membership}}


[https://bigquant.com/codeshare/f3140995-dd6e-4875-a91e-a1bd0226f645](https://bigquant.com/codeshare/f3140995-dd6e-487

由small_q创建,最终由small_q更新于

低频因子构建:Alpha191因子构建(9)

策略源码:


{{membership}}


[https://bigquant.com/codeshare/73febaa3-a225-4bc5-b56b-2390f3de6c9e](https://bigquant.com/codeshare/73febaa3-a225-4

由small_q创建,最终由small_q更新于

分页:第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页