风险管理

从金融视角来看,风险管理是企业持续发展和稳健运营的核心要素。它涉及识别、评估、监控和控制潜在的风险,以便将不良影响最小化,并促进企业在不断变化的经济环境中保持弹性。有效的风险管理策略不仅有助于保护资产和减少损失,还能增强投资者的信心,维持公司声誉。为了确保这一流程的实施,金融机构通常采用先进的风险测量模型和技术,以及严格的内部政策和程序。这样的方法使机构能够预测潜在威胁,迅速应对突发事件,并在机会与风险之间找到适当的平衡,从而实现可持续增长和盈利。

高频动量策略与主观超短交易

分享主题

高频动量策略与主观超短交易

\

视频回放

https://www.bilibili.com/video/BV1eG4y147Ki/

\

直播资料

/wiki/static/upload/70/70110d2a-6075-45b4-ad3c-618340dc720f.pdf

\

更新时间:2025-04-15 07:19

如何构建Halpha、wgt_return_Nm等动量因子

更新

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[http

更新时间:2025-04-15 07:19

如何进行多策略组合及分配各自的仓位配比?

资产配置理论及其演进

大类资产配置理论研究始于20世纪30年代,传统配置策略包括60/40、等权重投资组合和均值方差模型等。20世纪90年代,为了放宽MPT的假设条件,提高理论在实践中的可行性,以BL、捐赠基金模型、投资组合保险策略、美林时钟等为代表的大类资产配置策略被提出。进入21世纪以后,市场开始用“因子”来解释资产的投资回报,不同因子的开发和基于因子的配置模型逐渐受到市场的关注。随着科技在金融领域的应用,基于MPT、大数据和人工智能的配置模型(智能投顾)正在被广泛使用于个人资产配置上。 未来大数据+机器深度学习或将打破人类认知局限,将我们带入资产配置4.0时代。

资产配

更新时间:2025-04-15 07:19

xgboost自定义目标和评估函数

https://bigquant.com/experimentshare/85eb463354e54a9695eddc0c570040e6

\

更新时间:2025-04-15 07:19

【Meetup讲义】10月15日讲义

https://bigquant.com/experimentshare/728eb11c745f400aba4c91a4839b253a

\

更新时间:2025-04-15 07:19

深度学习在期货高频上的应用

问题

深度学习在期货高频上的应用

策略源码

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2025-04-15 07:19

39th Meetup

\

更新时间:2025-04-15 07:19

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2025-04-15 07:19

49th Meetup

Q1-@james:有什么另类的标注可以推荐下?

https://bigquant.com/wiki/doc/-0kcMgSnQXw

https://bigquant.com/wiki/doc/rengongzhineng-xilie-ershijiu-shouyi-linglei-biaoqian-zhengquan-fuben-xRMNFmmg00

{w:100}{w:100}{w:100}

更新时间:2025-04-15 07:19

12.24策略会预告:期货高频因子策略

视频

https://www.bilibili.com/video/BV1p14y1K7mp/

介绍

{w:100}{w:100}{w:100} ![{w:90}{w:100}{w:100}](/wiki/api/attachments.redirect?id=c07884e1-08b3-4073-9bf2-9ebca5efc0

更新时间:2025-04-15 07:19

2023-AI量化Meetup

\

更新时间:2025-04-15 07:19

参数寻优获得/夏普信息比/最大回撤/胜率-2

8月19日Meetup模板:第二种方式

https://bigquant.com/experimentshare/5e82e63fe5154eb58b69ffa37998d588

\

更新时间:2025-04-15 07:19

storanker模型同时买入因子最大和最小

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-04-15 07:19

51st MEETUP

PPT

/wiki/static/upload/1f/1fdcde6d-6311-49fc-a1ad-e533c840cf97.pdf

视频

https://www.bilibili.com/video/BV1zc411V7EW/?spm_id_from=333.999.0.0

\

更新时间:2025-04-15 07:19

如何构建和使用情绪指标?

问题

每日涨停/跌停数,每日上涨股票数等情绪指标如何构建和使用?

视频

[https://www.bilibili.com/video/BV1Z94y1Q73b?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086](https://www.bilibili.com/video/BV1Z94y1Q73b?share_source=copy_web&vd_source=2e7dc1240

更新时间:2025-04-15 07:19

参数寻优获得/夏普信息比/最大回撤/胜率

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-04-15 07:19

如何利用stockranker开发做空策略?

问题

我试过用stockrank来标注做空股票和期货,(默认参数,回测做空的代码都写好)标注上加-,如-shift(close,-2)/shift(open,-1)或-shift(open,-1)/shift(open,-2),随机生成几百甚至上千的策略回测所取得的效果普遍没有做多好,大多数情况甚至连正收益都达不到,而做多好多都轻松取得正收益,是算法的特性还是有其他窍门?

视频

https://www.bilibili.com/video/BV1Ny4y1E7KJ

\

策略源

更新时间:2025-04-15 07:19

上涨和下跌预测的stockranker模型组合(卖出)

https://bigquant.com/experimentshare/962ef5e58f1e41acbeecaa0161fc56c6

\

更新时间:2025-04-15 07:19

回测引擎常用功能示例

{{membership}}

https://bigquant.com/codeshare/ccb0fdad-c4da-424e-ace1-dd57ace94cec

\

更新时间:2025-04-15 07:19

情绪因子策略风控

https://bigquant.com/experimentshare/5730c1e899ef4685ba497c554c7eab79

\

更新时间:2025-04-15 07:19

模型保存读取

7月16日Meetup模板案例:

策略案例

https://bigquant.com/experimentshare/0aae2066f74e475ba198a6f79757c03f

\

更新时间:2025-04-15 07:19

简单网格交易日内择时

AI量化Meetup 2021年1月28日期问题,配合视频更容易理解。视频详见:

2021-AI量化Meetup导览

策略案例

https://bigquant.com/experimentshare/5dd6b4f7a29d4c5d827aeeff05816cfd

\

更新时间:2025-04-15 07:19

【主题分享】市场风格变化时策略如何自动切换

策略源码

A:市场风格变化时策略如何自动切换

更新时间:2025-04-15 07:19

53rd Meetup

\

更新时间:2025-04-15 07:19

互信息计算

策略案例

https://bigquant.com/experimentshare/6dbc5eb845fe48d0a8b61e60785cf762

\

更新时间:2025-04-15 07:19

分页第1页第2页第3页第4页第5页第6页第19页
{link}