最好更细粒度的, 比如分钟级别。
好像没找到。 求例子。
更新时间:2025-02-15 14:15
更新时间:2025-02-15 14:10
更新时间:2025-02-15 14:08
请问有老师知道这种情况怎么解决吗?
更新时间:2025-02-15 14:05
更新时间:2025-02-15 13:56
回测如何设置一次全仓买入一只股票
更新时间:2025-02-15 13:54
更新时间:2025-02-15 13:53
更新时间:2025-02-15 13:40
如标题
更新时间:2025-02-15 13:24
更新时间:2025-02-15 13:15
麻烦工程师小哥看一下
更新时间:2025-02-15 12:38
查了好久,没有找到实盘的指导,大佬们请指导一下。
更新时间:2025-02-15 12:19
凯利准则对于长期交易来说已经足够好,前提是投资者对风险是中性的,并且能够承受较大的回撤。然而,在实际交易中,我们无法接受长时间和较大的回撤。为了克服凯利准则导致的较大回撤问题,Busseti等人(2016年)提出了风险约束凯利准则,它将最大化长期对数增长率与回撤作为约束结合起来。这种约束使我们能够获得更平滑的权益曲线。你将在这里了解这种新型凯利准则的一切,并将其应用于交易策略。
本文涵盖以下内容:
凯利准则是一个著名的用于分配投资组合资源的公式。你可以在互联网上找到许多关于它的资源。例如
更新时间:2025-01-21 03:19
本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
众所周知,Barra因子分析是目前行业内外最常用的因子分析体系。
然而在做Barra体系分析的时候常用的一个方式就是行业或市值中性化,今天主要用最易懂的语言介绍一下什么是barra因子分析体系,以及什么是因子中性化。在这里我会避开繁琐的数学公式,尽量深入浅出的让Barra体系以及市值中性化清晰易懂。
做因子分析之前首先我们需要有一个因子计算方式,在这
更新时间:2025-01-09 10:32
本文14323字,阅读约28分钟
导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。
1.人工智能量化投资概述
2.人工智能技术简介
3.机器学习在量化投资中应用的具体方法解析
AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅
更新时间:2025-01-09 10:19
来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien
机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,人们对其在金融领域的应用也越来越感兴趣。在投资管理中,已被应用于新闻的情绪分析、趋势分析、投资组合优化、风险建模等。那么,机器学习在量化投资中有哪些潜在应用呢?
1.常见的机器学习算法
机器学习算法主要有三种:监督学习、无监督学习和强化学习。监督学习是在已知输入和输出的情况下训练出一个模型,将
更新时间:2024-12-11 08:16
更新时间:2024-12-09 06:15
量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。
量化交易模型的一般由以下几个部分组成:
1 数据处理模型: 量化交易的基石是数据。这包括了从历史价格、成交量到公司财报、宏观经济指标等各类数据。对这些数据的收集、清洗和处理是构建有效模型的首要步骤。**[BigQuant策略编写平台](ht
更新时间:2024-12-05 02:12
协方差是一个统计学的概念,用于衡量两个随机变量间的总体误差。它反映的是两个变量之间的相互关系以及它们如何一起变动。在金融领域,特别是在投资组合管理和风险管理中,协方差是一个非常重要的概念,因为它帮助投资者理解不同资产之间的价格变动关系,从而更好地分散风险。
更新时间:2024-12-04 09:34
行业轮动策略是一种量化交易策略,旨在通过在不同行业之间进行资金分配,捕捉市场趋势和行业表现的周期性变化。 从名字即可看出,经济周期导致任何市场状态下可能都会存在股市价格表现较好的行业,因此我们如果能布局这些行业并定期轮动调整,那会取得还不错的投资效果。与单纯持有某个行业或个股相比,行业轮动策略通过分散投资风险,提高了组合的抗风险能力,并且能够在不同的市场环境中寻找最佳的投资机会。
本策略是曾经在社区里的一个策略复现而来,策略链接为:<https://bigquant.com/wiki/doc/v10-uKB4qr0I
更新时间:2024-09-20 02:58
企业信用评估是投资决策中的重要环节,帮助投资者识别和评估潜在的违约风险,这对于保护投资者的本金和收益至关重要。通过对企业的财务状况、经营状况、管理能力等多方面因素的综合分析,投资者可以更准确地判断企业的信用状况和偿债能力。信用评级提供了一个衡量企业信用风险的有效工具,有助于投资者做出更为明智的投资决策。信用评估可以从财务数据分析、公司背景分析、同行业竞争对比分析等多方面入手。下面主要从财务数据定量分析的角度对企业信用风险的评估进行介绍。
20世纪60年代,美国学者爱德华·阿特曼(Edward Altman)提出了用于财务分析的Z值模型,用于预测企业破产的可能性。该模型通过
更新时间:2024-09-12 10:58
选股条件
动量指标选股
仓位设置
等权重
调仓规则
1-5个交易日
风险管理
无
回测设置
初始资金:500000
起始时间:2023-06-01
结束时间:2024-08-20
交易成本:买入万3,卖出千分之1.3,不足5元按5元收取
撮合价格:开盘价
\
绩效指标
总收益:16%
年化收益:13%
夏普比率:0.87
最大回撤:6%
结果分析
整个策略表现不错,年化收益远超银行理财产品,其中最大回撤为5%,主要是行业
更新时间:2024-09-02 11:02
选股条件
选取超跌的个股
过滤条件
归母净利润大于0
归母净利润增长较高
市值偏小但是不选低价股
持仓股数
5
仓位设置
等权重
调仓规则
每日轮动调仓
风险管理
无
回测设置
初始资金:500000
起始时间:2021-01-01
结束时间:2024-08-23
交易成本:买入万3,卖出千分之1.3,不足5元按5元收取
撮合价格:开盘价
\
![](/wiki/api/attachments.redirect?id=330e6112-86ba
更新时间:2024-09-02 11:02
组合优化器是一种用于优化投资组合的工具,旨在通过数学方法和算法来选择和配置资产,在特定约束条件下实现特定的投资目标,如最大化预期收益、最小化风险或达到某种风险/收益平衡,数学公式如下:
代码示例如下:
{{membership}}
[https://bigquant.com/codesharev3/161c3ae4-ca6d-4341-aa3e-65bc79d8113d](https://bigquant.com/codeshar
更新时间:2024-07-12 01:59
行业轮动策略是一种量化交易策略,旨在通过在不同行业之间进行资金分配,捕捉市场趋势和行业表现的周期性变化。 从名字即可看出,经济周期导致任何市场状态下可能都会存在股市价格表现较好的行业,因此我们如果能布局这些行业并定期轮动调整,那会取得还不错的投资效果。与单纯持有某个行业或个股相比,行业轮动策略通过分散投资风险,提高了组合的抗风险能力,并且能够在不同的市场环境中寻找最佳的投资机会。
本策略是曾经在社区里的一个策略复现而来,策略链接为:<https://bigquant.com/wiki/doc/v10-uKB4qr0I
更新时间:2024-07-04 06:55