{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-1071:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-86:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-86:input_data","from_node_id":"-238:data"},{"to_node_id":"-1078:input_data","from_node_id":"-1071:data"},{"to_node_id":"-921:input_1","from_node_id":"-1078:data"},{"to_node_id":"-1071:features","from_node_id":"-434:data"},{"to_node_id":"-1078:features","from_node_id":"-434:data"},{"to_node_id":"-929:input_data","from_node_id":"-921:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-929:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2020-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2021-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-1071","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-1071"},{"name":"features","node_id":"-1071"}],"output_ports":[{"name":"data","node_id":"-1071"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-1078","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-1078"},{"name":"features","node_id":"-1078"}],"output_ports":[{"name":"data","node_id":"-1078"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-434","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"_ret = shift(close_0,-1)/close_0 -1\nret = shift(_ret,-5)\nlow = low_0\nhigh = high_0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-434"}],"output_ports":[{"name":"data","node_id":"-434"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-921","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read()\n df1 = df.groupby(['instrument']).apply(calmar_ratio).reset_index(drop=True)\n data_1 = DataSource.write_df(df1)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n\ndef calmar_ratio(df):\n import empyrical\n df['calmar_ratio'] = df['ret'].rolling(5).apply(lambda x:empyrical.calmar_ratio(x, period='daily', annualization=None))\n return df","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-921"},{"name":"input_2","node_id":"-921"},{"name":"input_3","node_id":"-921"}],"output_ports":[{"name":"data_1","node_id":"-921"},{"name":"data_2","node_id":"-921"},{"name":"data_3","node_id":"-921"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-929","module_id":"BigQuantSpace.auto_labeler_on_datasource.auto_labeler_on_datasource-v1","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n# shift(close, -5) / shift(open, -1)\ncalmar_ratio\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-929"}],"output_ports":[{"name":"data","node_id":"-929"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='190.92010498046875,20.11312484741211,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='495.57696533203125,773.4276123046875,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='108.40484619140625,525.6121826171875,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='729.7816162109375,898.0508422851562,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,131.827880859375,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='320.4791259765625,664.9439392089844,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-215' Position='381,188,200,200'/><node_position Node='-222' Position='385,280,200,200'/><node_position Node='-231' Position='1078,236,200,200'/><node_position Node='-238' Position='1081,327,200,200'/><node_position Node='-250' Position='1034.5860595703125,956.1857299804688,200,200'/><node_position Node='-1071' Position='-47.442665100097656,124.48178482055664,200,200'/><node_position Node='-1078' Position='-45.80359649658203,188.98103713989258,200,200'/><node_position Node='-434' Position='-140.69084930419922,22.69428253173828,200,200'/><node_position Node='-921' Position='-40.484779357910156,270.0976142883301,200,200'/><node_position Node='-929' Position='-31.583663940429688,393.6476936340332,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-04-22 19:04:33.779843] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-22 19:04:33.791299] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:33.795347] INFO: moduleinvoker: instruments.v2 运行完成[0.015496s].
[2022-04-22 19:04:33.804079] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-22 19:04:33.812349] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:33.814681] INFO: moduleinvoker: input_features.v1 运行完成[0.010615s].
[2022-04-22 19:04:33.834203] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-22 19:04:33.853427] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:33.855473] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.021283s].
[2022-04-22 19:04:33.865793] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-22 19:04:33.879927] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:33.882675] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.016864s].
[2022-04-22 19:04:33.891268] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-22 19:04:33.902889] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:33.905927] INFO: moduleinvoker: instruments.v2 运行完成[0.014664s].
[2022-04-22 19:04:33.923805] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-22 19:04:33.934550] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:33.937295] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.013505s].
[2022-04-22 19:04:33.948198] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-22 19:04:33.963407] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:33.965749] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.017542s].
[2022-04-22 19:04:33.976743] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-04-22 19:04:33.988811] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:33.992412] INFO: moduleinvoker: dropnan.v1 运行完成[0.015652s].
[2022-04-22 19:04:34.004776] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-22 19:04:34.046430] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.049451] INFO: moduleinvoker: input_features.v1 运行完成[0.0447s].
[2022-04-22 19:04:34.072946] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-22 19:04:34.084797] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.087420] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.014488s].
[2022-04-22 19:04:34.099633] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-22 19:04:34.115525] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.119773] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.020122s].
[2022-04-22 19:04:34.138886] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-22 19:04:34.151474] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.154293] INFO: moduleinvoker: cached.v3 运行完成[0.015409s].
[2022-04-22 19:04:34.166811] INFO: moduleinvoker: auto_labeler_on_datasource.v1 开始运行..
[2022-04-22 19:04:34.175475] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.177352] INFO: moduleinvoker: auto_labeler_on_datasource.v1 运行完成[0.010546s].
[2022-04-22 19:04:34.191023] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-22 19:04:34.205336] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.207748] INFO: moduleinvoker: join.v3 运行完成[0.016726s].
[2022-04-22 19:04:34.222216] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-04-22 19:04:34.238733] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.241012] INFO: moduleinvoker: dropnan.v1 运行完成[0.018817s].
[2022-04-22 19:04:34.249648] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-04-22 19:04:34.265783] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.376993] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.127337s].
[2022-04-22 19:04:34.389892] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-04-22 19:04:34.410927] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:34.414198] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.024309s].
[2022-04-22 19:04:34.488932] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-22 19:04:34.508588] INFO: moduleinvoker: 命中缓存
[2022-04-22 19:04:36.396148] INFO: moduleinvoker: backtest.v8 运行完成[1.907347s].
[2022-04-22 19:04:36.399753] INFO: moduleinvoker: trade.v4 运行完成[1.974875s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-974528eca3e540c8bf757c9778fc7ed7"}/bigcharts-data-end
- 收益率-18.99%
- 年化收益率-19.62%
- 基准收益率-5.2%
- 阿尔法-0.14
- 贝塔0.1
- 夏普比率-0.35
- 胜率0.42
- 盈亏比1.31
- 收益波动率43.7%
- 信息比率-0.01
- 最大回撤40.58%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-f988e050d1ff4bf4a2e79034a3165e5c"}/bigcharts-data-end