代码如下
import dai
st = ''
sql = f"""
select
date,
instrument,
sw2021_level2,
sw2021_level2_name,
r_ind,
r_mkt,
m_product(r_ind + 1,240)- 1 as r_ind_1y,
m_product(r_mkt + 1,240)- 1 as r_mkt_1y,
r_ind - r_mkt as r_std,
(r_ind_1y - r_m
更新时间:2024-10-09 10:16
行情数据NaN空值处理的bug问题
回测时发现仓位中有些早期时间段(大多2012年前)仓位很轻,按理持仓就为10支,可那些日子里只有1,2支. 后面发现,:\n 因为我代码中有: m_max(close,100). 只要这100前有一个NAN值,这支股票就被无情的排除了.
要是:m_max( close,100, 参数=’ 0’ ).这里加个参数,表示数据中有NAN时填充0计算. 也可以=”停牌前的价格”\n要是能有这选择参数就完美了.
\
更新时间:2024-10-09 09:47
以下涉及到的流数据表需要权限才可使用,开通权限请咨询小Q。
构造这个因子需要用到的数据的表格形式如下:
日期 | 买一量 | 卖一量 |
---|---|---|
t1 | b1 | a1 |
t2 | b2 | a2 |
… | … | … |
tn | bn | an |
首先我们求出截面净委买比例:
最后将分钟内的截面净委买比例求平均即可得到时间加权的净委买比例,所以这个因子
更新时间:2024-09-27 01:50
本文以中证1000的股指期货(IM2503.CFE)与指数(000852.SH)价差为例, 我们来加工股指与期货的价差因子并进行实时可视化操作。以下涉及到的流数据表需要权限才可使用,开通权限请咨询小Q。
因子构造思路较为简单,我们需要用到期货l1快照数据以及指数快照数据,首先计算快照上的价差,最后将价差用last
函数聚合成分钟频的数据。
首先导入第三方库,并将数据推送至中间表:
import dai
import time
import plotly.graph_objects as go
from IPython.di
更新时间:2024-09-27 01:49
1、bigtrade的模式和聚宽很大的一个区别就是,策略要用的数据你们是先全部提取好了作为直接输入到回测引擎,这样就可以减少回测引擎每回测一天跑一天数据的麻烦,且再次回测也会有缓存,加快回测效率。我想问的是,我在取数据的时候是取整个回测时间段的,模拟的时候取数是当前的,这两个取数代码的写法肯定不同,不像聚宽,永远取回测日当前时间数据就行,而且我策略要用到的因子数据是需要比较复杂的加工的,有sql,有python,那我提交模拟之后,模拟交易怎么能识别我计算因子的逻辑,然后计算当天的因子值
2.我write_bdb的表是永久有效的么?这个表的存储空间需要付费么?
更新时间:2024-09-13 06:02
股息率是指公司每年支付的股息与其股票当前市场价格的比率。它是一个重要的投资指标,帮助投资者评估股票的收入潜力,股息率越高,通常表示投资者可以从该股票中获得更多的被动收入。计算公式为:
本文更多介绍如何使用 ASOF JOIN 操作处理日频数据和非日频数据,因此,我们简化股息率的公式,假设分子分母都使用总股本,则上述公式可以简化如下:
![](/wiki/api/attachments.redirect?id=4
更新时间:2024-09-02 08:33
更新时间:2024-08-22 19:08
1、如果我的因子在sql之外还需要用Python做一些处理,请问提交因子的时候factor_sql 该怎么写?
2、因子分析中是否每个股票每个交易日都要有因子值,我是否可以每个股票只有月末有一个因子,其他时间都是空的。
更新时间:2024-08-22 09:10
import dai
df = dai.query("""
SELECT
date, instrument,
IF(price_limit_status = 3,1,0) AS _zt,
If(m_sum(_zt,10) = 1,1,0) AS _firstzt,
open/m_lead(close,-1)-1 AS _jump,
If(_jump > 0.04,1,0) AS _jumphigh,
close/open-1 AS _positive,
更新时间:2024-08-19 09:48
https://bigquant.com/codesharev3/0fcad747-50d5-47b1-81ea-c6d9127ccae5
为何在加入了2个特征表达式,什么值都去不到。谢谢各位
更新时间:2024-07-24 02:18
positions = context.get_account_positions()
for code, position in positions.items():
print(code,position.last_sale_date, context.trading_calendar.session_distance(position.last_sale_date, data.current_dt))
\
更新时间:2024-06-29 00:03
将净利润增长率,净资产收益率,市盈率作为作为输入特征;
将净利润增长率长大于15%,连续3年净资产收益率大于15%,市盈率低于35设置为表达式过滤条件。
\
\
m5
”BigTra更新时间:2024-06-19 06:45
两个“输入特征(DAI SQL)”模块,分别从两个数据表提取数据,之后可以共同连接一个新的“输入特征(DAI SQL)”模块,做到数据连接的功能
我们来看一个具体的例子,在下面这个例子中:
cn_stock_prefactors
表中提取出pe_ttm
和total_market_cap
两个字段,并且过滤掉ST股票cn_stock_money_flow
表中提取出main_flow
和main_rate
两个字段![](/wiki/api/attachments.redirect?id=2d891157-85
更新时间:2024-06-19 02:45
更新时间:2024-06-19 02:41
首先获取训练集“Stanford V1.0”和使用Glove模型训练好的词向量矩阵。
我们使用shell命令获取以上文档,脚本如下:
DATASETS_DIR="utils/datasets"
mkdir -p $DATASETS_DIR
cd $DATASETS_DIR
# Get Stanford Sentiment Treebank
if hash wget 2>/dev/null; then
wget http://nlp.stanford.edu/~socherr/stanfordSentimentTreebank.zip
else
c
更新时间:2024-06-12 06:06
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
下列代码在读取数据时,使用最新dai.query接口即可。
\
本文继续讲解Pandas库在数据分析和处理上的一些应用。
[https://bigquant.com/codesharev2/5a39d584-7b74-4d00-832f-
更新时间:2024-06-12 02:36
新版数据导入部分使用dai库
本节主要讲解Pandas库中 DataFrame 的数据查看与选择
Pandas 是基于 Numpy 构建的,让以 Numpy 为中心的应用变得更加简单。平台获取的数据主要是以 Pandas 中DataFrame 的形式。除此之外,Pandas 还包括 一维数组Series 以及三维的Panel。
下面将进行详细介绍:
Series:一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而
更新时间:2024-06-11 08:59
拉取数据显示报错,没有per_close字段
更新时间:2024-06-07 15:26
[https://www.bilibili.com/video/BV1Gr4y177FR?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086](https://www.bilibili.com/video/BV1Gr4y177FR?share_source=copy_web&vd_source=2
更新时间:2024-06-07 10:55
\
金融学理论:
QMJ因
更新时间:2024-06-07 10:55
transformer等深度学习中序列窗口滚动模块具体的功能是什么,为什么要把数据做这个处理,能否用numpy的源码写一个函数?
https://www.bilibili.com/video/BV1i44y1q7As?p=4&share_source=copy_web
2021年7月8日Meetup策略模板:
[https://bigquant.com/experimentshare/6235b7c
更新时间:2024-06-07 10:55
https://www.bilibili.com/video/BV1jh411u7zj/?vd_source=ecd29bbd04cbefdfa426167c55241973
[https://bigquant.com/experimentshare/d4804cb7b37b40e191de5b196897c33b](https://bigquant.com/experiment
更新时间:2024-06-07 10:55
如何通过爬虫获取开盘啦app上面的数据?
https://www.bilibili.com/video/BV13R4y1C7KQ/
\
https://bigquant.com/experimentshare/cb90e8e440bc47b9bbc9cb897e452af8
\
更新时间:2024-06-07 10:55
在因子开发研究完之后,选取了|IC|较高的几个因子后,一般如何合成一个策略,即在工程方法论上的一般步骤是什么?比如应该如何选择哪些模型进行合成(树模型or深度学习模型,是否有规律),分别是否都必须在训练前进行特征工程的处理再训练(去极值、中性化去除相关性),比如是否需要探查各个因子的相关性(如果多个因子存在一定的相关性,一般相关度大于多少需要进行处理,是否需要逐对特征两两取残差)
\
方正的==“水中行舟”研报==中提到“取市场上所有股票在当日“不分化时刻”的成交额序列
更新时间:2024-06-07 10:55
BigQuant的DAI数据平台提供了许多字段运算的表达式函数,完整的函数在这个文档(DAI SQL 函数列表),我们这篇文档总结了一些常见的表达式
DAI数据平台封装的表达式函数,需要在可视化模式下的“输入特征(DAI SQL)”模块中的“表达式特征”一栏中填写,之后再连接数据抽取模块就可以把该表达式的计算抽取出来
例如,我们以5日平均收盘价`m_avg(close,
更新时间:2024-05-28 09:55