代码如下
import dai
st = ''
sql = f"""
select
date,
instrument,
sw2021_level2,
sw2021_level2_name,
r_ind,
r_mkt,
m_product(r_ind + 1,240)- 1 as r_ind_1y,
m_product(r_mkt + 1,240)- 1 as r_mkt_1y,
r_ind - r_mkt as r_std,
(r_ind_1y - r_m
更新时间:2024-10-09 10:16
行情数据NaN空值处理的bug问题
回测时发现仓位中有些早期时间段(大多2012年前)仓位很轻,按理持仓就为10支,可那些日子里只有1,2支. 后面发现,:\n 因为我代码中有: m_max(close,100). 只要这100前有一个NAN值,这支股票就被无情的排除了.
要是:m_max( close,100, 参数=’ 0’ ).这里加个参数,表示数据中有NAN时填充0计算. 也可以=”停牌前的价格”\n要是能有这选择参数就完美了.
\
更新时间:2024-10-09 09:47
股息率是指公司每年支付的股息与其股票当前市场价格的比率。它是一个重要的投资指标,帮助投资者评估股票的收入潜力,股息率越高,通常表示投资者可以从该股票中获得更多的被动收入。计算公式为:
本文更多介绍如何使用 ASOF JOIN 操作处理日频数据和非日频数据,因此,我们简化股息率的公式,假设分子分母都使用总股本,则上述公式可以简化如下:

for code, position in positions.items():
print(code,position.last_sale_date, context.trading_calendar.session_distance(position.last_sale_date, data.current_dt))
\
更新时间:2024-06-29 00:03
将净利润增长率,净资产收益率,市盈率作为作为输入特征;
将净利润增长率长大于15%,连续3年净资产收益率大于15%,市盈率低于35设置为表达式过滤条件。
\
\
m5
”BigTra更新时间:2024-06-19 06:45
两个“输入特征(DAI SQL)”模块,分别从两个数据表提取数据,之后可以共同连接一个新的“输入特征(DAI SQL)”模块,做到数据连接的功能
我们来看一个具体的例子,在下面这个例子中:
cn_stock_prefactors
表中提取出pe_ttm
和total_market_cap
两个字段,并且过滤掉ST股票cn_stock_money_flow
表中提取出main_flow
和main_rate
两个字段,分别是否都必须在训练前进行特征工程的处理再训练(去极值、中性化去除相关性),比如是否需要探查各个因子的相关性(如果多个因子存在一定的相关性,一般相关度大于多少需要进行处理,是否需要逐对特征两两取残差)
\
方正的==“水中行舟”研报==中提到“取市场上所有股票在当日“不分化时刻”的成交额序列
更新时间:2024-06-07 10:55
如何通过爬虫获取开盘啦app上面的数据?
https://www.bilibili.com/video/BV13R4y1C7KQ/
\
https://bigquant.com/experimentshare/cb90e8e440bc47b9bbc9cb897e452af8
\
更新时间:2024-06-07 10:55
\
金融学理论:
QMJ因
更新时间:2024-06-07 10:55
BigQuant的DAI数据平台提供了许多字段运算的表达式函数,完整的函数在这个文档(DAI SQL 函数列表),我们这篇文档总结了一些常见的表达式
DAI数据平台封装的表达式函数,需要在可视化模式下的“输入特征(DAI SQL)”模块中的“表达式特征”一栏中填写,之后再连接数据抽取模块就可以把该表达式的计算抽取出来
例如,我们以5日平均收盘价`m_avg(close,
更新时间:2024-05-28 09:55
在使用“输入特征(DAI SQL)”提取数据的时候,可能会遇到缺失值的问题,缺失值的出现可能是因为原始数据表中有缺失值,也有可能是表达式计算的过程中产生了缺失值
对于缺失值,我们主要有两种处理方式,缺失值删除,或者缺失值填充
要想将缺失值剔除,只需要在“输入特征(DAI SQL)”模块中,将“表达式-移除空值”勾选即可
值得注意的是,使用这种方法,只要一行数据中有一个字段是空值,那么这一行就会被剔除
因此,当有多个特征被提取的时候,只要有一个特征由于运算逻辑错误导致整个字段都是空值的话,那么所有行都是包含空值的,这样的话数据提取
更新时间:2024-05-27 03:49
A股分两种:“漂亮50”和“要命3000” http://stock.qq.com/a/20170428/006821.htm 证券时报记者以三个指标筛选出A股的“漂亮50”,这三个指标分别是净利润增长率长大于15%,连续3年净资产收益率大于15%,市盈率低于35。
更新时间:2024-05-27 02:05
更新时间:2024-05-22 09:37
新版本暂无深度学习可视化模块
在阅读了 深度学习的简要介绍后,本文将介绍深度学习DNN模型及其在量化投资领域中的应用。
机器学习作为人工智能的核心,其传统算法在解决很多问题上都表现出了高效性。随着近些年数据处理技术上的进步和计算能力的提升,深度学习得以在很多问题上也大放光彩,成为近一段时间互联网、金融等领域的大热门。
在量化投资领域,机器学习尤其是由统计学延伸的各种算法一直以来都被尝试应用在选股、择时等策略的开发上,随着深度学习在其他领域上的突破,其在自动化交易甚至投资策略的自开发自
更新时间:2024-05-21 07:27
Numpy(Numerical Python)和Pandas两个库是Python编程语言中两个极其重要的库,尤其在数据科学、金融分析和量化投资领域。尽管它们在处理数据方面有所重叠,但各自设计的初衷和优势领域有所不同。
更新时间:2024-05-20 02:35
更新时间:2024-05-20 02:34
\
更新时间:2024-05-20 02:32
\
更新时间:2024-05-20 02:32
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 06:03