import requests
url = "https://pchq.kaipanla.com/w1/api/index.php"
payload = ""
headers = {
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7,zh-TW;q=0.6',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
'Origin': 'https://www.kaipanla.com',
'Pragma': 'no-cache',
'Referer': 'https://www.kaipanla.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36',
'sec-ch-ua': '"Chromium";v="106", "Google Chrome";v="106", "Not;A=Brand";v="99"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"'
}
response = requests.request("POST", url, headers=headers, data=payload)
data = response.json()
columns = {"代码":[],"概念名称":[],"强度":[],"未知1":[],"涨速":[],"成交额":[],"主力净额":[],"主力买入":[],"主力卖出":[],"量比":[],"流通市值":[],"未知2":[],"未知3":[]}
columns_list = ["代码","概念名称","强度","未知1","涨速","成交额","主力净额","主力买入","主力卖出","量比","流通市值","未知2","未知3"]
for i in data["plates"]["list"]:
for j in range(len(i)):
columns[columns_list[j]].append(i[j])
import pandas as pd
data_df = pd.DataFrame(columns)
data_df["date"]=data["plates"]["Day"][0]
# data_df.to_csv("概念轻强度{}.csv".format(data["plates"]["Day"][0]))
print(data_df.head())
def requests_PlateID_stock(PlateID):
import requests
url = "https://pchq.kaipanla.com/w1/api/index.php"
payload = ""
headers = {
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7,zh-TW;q=0.6',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
'Origin': 'https://www.kaipanla.com',
'Pragma': 'no-cache',
'Referer': 'https://www.kaipanla.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36',
'sec-ch-ua': '"Chromium";v="106", "Google Chrome";v="106", "Not;A=Brand";v="99"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"'
}
response = requests.request("POST", url, headers=headers, data=payload)
return response.json()["stocks"]["list"]
import time
stock_jinxuan=[]
PlateID_list=data_df["代码"].values
for L in PlateID_list:
stock_columns={"代码":[],"股票":[],"价格":[],"涨幅":[],"成交额":[],"换手率":[],"涨速":[],"实际流通":[],"主力买入":[],"主力卖出":[],"主力净额":[],"区间涨幅":[],"概念":[]}
stock_columns_list=["代码","股票","价格","涨幅","成交额","换手率","涨速","实际流通","主力买入","主力卖出","主力净额","区间涨幅","概念"]
data = requests_PlateID_stock(L)
for i in data:
for j in range(len(i)):
stock_columns[stock_columns_list[j]].append(i[j])
import pandas as pd
data_df = pd.DataFrame(stock_columns)
data_df["精选概念"]=L
stock_jinxuan.append(data_df)
time.sleep(0.1)
data_new = pd.concat(stock_jinxuan)
data_new = data_new.reset_index()
# data_new.to_csv("股票精选分类{}.csv".format(data["plates"]["Day"][0]))
print(data_new.head())