特征工程

特征工程在金融领域的应用,实质上是利用数据和统计学方法,挖掘和提炼影响金融决策的关键因素,将之转化为模型可理解的特征,进而提高金融模型的预测能力和决策效率。特征工程涉及特征构建、特征选择以及特征转换等环节,它能从复杂多变的市场环境中提取出关键信息,帮助金融机构在风险评估、投资策略、信贷审批等核心业务上做出更精准、更智能的决策。例如,在信贷风险评估中,特征工程可以通过整合借款人的历史信用记录、财务状况、社交网络行为等多维度数据,构建出全面而深入的风险评估特征,进而增强风险模型的预测精度,提升信贷决策的科学性和有效性。总的来说,特征工程对于金融机构提升数据驱动决策的能力,实现更精细化、智能化业务管理有着重要的价值和意义。

因子(特征)工程是什么

导语

近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。


特征工程是什么?

有这么一句话在业界广泛流传: 数据和特征决定了机器学习的上限。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。简单理解为:特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

**特征工程在量化投资领域有非常适宜的土壤,

更新时间:2024-06-12 01:44

利用 gplearn 进行特征工程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-12 01:41

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2024-06-11 03:20

LSTM大盘择时+Stockranker选股

请参考新版的大盘择时

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/a5ed3eddf32f4e4dad4811a1acc257f0

\

更新时间:2024-05-24 10:28

lightgbm多因子选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[ht

更新时间:2024-05-20 06:21

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2024-05-20 02:09

神经网络交易算法

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b

\

更新时间:2024-05-20 01:02

用梯度提升树-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:35

StockRanker选股+随机森林大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:25

华泰研报:XGboost实现有序回归

策略源码:

{{membership}}

已经更新到了AIStudio3.0.0版本, 请转移至

https://bigquant.com/wiki/doc/xgboost-I1ZKSVykGR

https://bigquant.com/codeshare/a290e569-7680-45d7-86be-f6c81c18a1e6

\

更新时间:2024-05-16 09:16

【历史文档】策略示例-StockRanker模型结果解读

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 01:58

【历史文档】策略-数据标注

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 09:50

【历史文档】算子样例-缺失数据处理

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 08:18

【历史文档】算子样例-机器学习

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 07:49

【历史文档】因子构建与标注样例-构建大盘收益率因子

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 06:34

【参赛】Deep Alpha-CNN策略克隆&调参擂台赛

\

更新时间:2023-06-27 03:23

BigQuant复现研报


\

更新时间:2023-06-13 06:50

ZScoreNorm标准化后输出全为空值?

问题

问题描述

ZScoreNorm标准化后输出全为空值?

问题策略

https://bigquant.com/experimentshare/e91b4eed4f534753a3692800f33a4737

\

更新时间:2023-06-01 02:13

回归问题的标签设置

问题

回归问题的标签设置

\

更新时间:2023-06-01 02:13

请问在特征数据中如何统计一段时间内某个条件出现次数

问题

例如我要在特征中加入一个因子:统计30日内收益小于5%的天数,该怎么写

解答

{w:100}

更新时间:2023-06-01 02:13

K近邻分类算法选股,提示错误

问题

{w:100} {w:100}请问这个错误是什么原因

解答

筛选过后的classes_prob_0没有数据,则索引[0]找不到相关的数据

更新时间:2022-12-20 14:20

模型

模型板块包含了AI算法模型,多因子模型等一些研究内容。

更新时间:2022-12-06 14:42

用传统框架测试机器学习-GBDT算法

策略案例

https://bigquant.com/experimentshare/44cc116a1dad4c37983b9be35da208ee

\

更新时间:2022-11-20 03:34

如何在特征里把另一个特征值连续加

问题

想实现如下功能: 特征A:判断5日均线>10日均线,记1,否则计-1 特征B:sum(‘A’,10) 记录10天内5日大于10日的天数

如果a用where(ta_sma_5_0>=ta_sma_10_0,1,-1) ,则B无法sum; sum(int(‘A’),10), invalid function: int 转换也不让用

请问该如何实现这个特征呢?

更新时间:2022-09-16 00:27

中国市场中怎样用机器学习来做股票投资

摘要

文献来源:Leippold, M., Wang, Q. & Zhou, W. (2021). Machine-Learning in the Chinese Stock Market. Journal of Financial Economics.

推荐原因:随着机器学习在金融和经济领域的应用迅速兴起,越来越多的学者利用机器学习工具研究股票的截面和时间序列预测。而中国股票市场历史较短,制度依然处于不断完善的阶段,有着自身的特殊性。本文根据中国市场的特征构建了一个全面的股票收益预测因子集,并利用几大流行的机器学习算法进行实证分析。经过CSPA条件预测能力检验,作者发现神经

更新时间:2022-08-31 08:45

分页第1页第2页第3页
{link}