{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-106:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-106:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-113:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-126:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-140:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-147:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-159:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-140:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-159:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-126:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-113:input_data","SourceOutputPortId":"-106:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-113:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-126:model"},{"DestinationInputPortId":"-147:input_data","SourceOutputPortId":"-140:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-147:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2017-06-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2017-07-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nrank_avg_amount_5\nrank_avg_turn_5\nrank_volatility_5_0\nrank_swing_volatility_5_0\nrank_avg_mf_net_amount_5","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2017-07-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2018-04-30","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-106","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"300","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-106"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-106"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-106","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-113","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-113"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-113"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-113","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-126","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":"20","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-126"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-126"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-126"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-126"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-126","OutputType":null},{"Name":"feature_gains","NodeId":"-126","OutputType":null},{"Name":"m_lazy_run","NodeId":"-126","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-140","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"300","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-140"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-140"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-140","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-147","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-147"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-147"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-147","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-159","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n #---------------------START:大盘风控(含建仓期)--------------------------\n today_date = data.current_dt.strftime('%Y-%m-%d')\n positions_all = [equity.symbol for equity in context.portfolio.positions]\n dataprediction=context.dataprediction\n today_prediction=dataprediction[dataprediction.date==today_date].direction.values[0]\n # 满足空仓条件\n if today_prediction<0:\t\n if len(positions_all)>0:\n # 全部卖出后返回\n for i in positions_all:\n if data.can_trade(context.symbol(i)):\n context.order_target_percent(context.symbol(i), 0)\n print('风控执行',today_date)\n return\n #运行风控后当日结束,不再执行后续的买卖订单\n #------------------------END:大盘风控(含建仓期)---------------------------\n \n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n seq_len=5 #每个input的长度\n # 导入包\n from keras.layers.core import Dense, Activation, Dropout\n from keras.layers.recurrent import LSTM\n from keras.models import Sequential\n from keras import optimizers\n import tensorflow.keras as tf \n from sklearn.preprocessing import scale\n from tensorflow.keras.layers import Input, Dense, LSTM\n from tensorflow.keras.models import Model\n # 基础参数配置\n instrument = '000300.SHA' #股票代码\n #设置用于训练和回测的开始/结束日期\n train_length=seq_len*10\n start_date_temp= (pd.to_datetime(context.start_date) - datetime.timedelta(days=2*train_length)).strftime('%Y-%m-%d') # 多取几天的数据,这里取5倍\n len1=len(D.trading_days(start_date=start_date_temp, end_date=context.end_date)) \n len2=len(D.trading_days(start_date=context.start_date, end_date=context.end_date))\n distance=len1-len2\n trade_day=D.trading_days(start_date=start_date_temp, end_date=context.end_date)\n start_date = trade_day.iloc[distance-train_length][0].strftime('%Y-%m-%d')\n split_date = trade_day.iloc[distance-1][0].strftime('%Y-%m-%d')\n fields = ['close', 'open', 'high', 'low', 'amount', 'volume'] # features因子\n batch = 100#整数,指定进行梯度下降时每个batch包含的样本数,训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步\n \n # 数据导入以及初步处理\n data1 = D.history_data(instrument, start_date, context.end_date, fields)\n data1['return'] = data1['close'].shift(-5) / data1['open'].shift(-1) - 1 #计算未来5日收益率(未来第五日的收盘价/明日的开盘价)\n data1=data1[data1.amount>0]\n datatime = data1['date'][data1.date>split_date] #记录predictions的时间,回测要用\n data1['return'] = data1['return']\n data1['return'] = data1['return']*10 # 适当增大return范围,利于LSTM模型训练\n data1.reset_index(drop=True, inplace=True)\n scaledata = data1[fields]\n traindata = data1[data1.date<=split_date]\n \n # 数据处理:设定每个input(series×6features)以及数据标准化\n train_input = []\n train_output = []\n test_input = []\n for i in range(seq_len-1, len(traindata)):\n a = scale(scaledata[i+1-seq_len:i+1])\n train_input.append(a)\n c = data1['return'][i]\n train_output.append(c)\n for j in range(len(traindata), len(data1)):\n b = scale(scaledata[j+1-seq_len:j+1])\n test_input.append(b)\n\n\n # LSTM接受数组类型的输入\n train_x = np.array(train_input)\n train_y = np.array(train_output)\n test_x = np.array(test_input) \n\n # 自定义激活函数\n import tensorflow.keras as tf\n def atan(x): \n return tf.atan(x)\n # 构建神经网络层 1层LSTM层+3层Dense层\n # 用于1个输入情况\n lstm_input = Input(shape=(seq_len,len(fields)), name='lstm_input')\n lstm_output = LSTM(32,input_shape=(seq_len,len(fields)))(lstm_input)\n Dense_output_1 = Dense(16, activation='linear')(lstm_output)\n Dense_output_2 = Dense(4, activation='linear')(Dense_output_1)\n predictions = Dense(1)(Dense_output_2)\n model = Model(inputs=lstm_input, outputs=predictions)\n model.compile(optimizer='adam', loss='mse', metrics=['mse'])\n model.fit(train_x, train_y, batch_size=batch, nb_epoch=5, verbose=0)\n # 预测\n predictions = model.predict(test_x)\n # 如果预测值>0,取为1;如果预测值<=0,取为-1.为回测做准备\n for i in range(len(predictions)):\n if predictions[i]>0:\n predictions[i]=1\n elif predictions[i]<=0:\n predictions[i]=-1\n \n # 将预测值与时间整合作为回测数据\n cc = np.reshape(predictions,len(predictions), 1)\n dataprediction = pd.DataFrame()\n dataprediction['date'] = datatime\n dataprediction['direction']=np.round(cc)\n context.dataprediction=dataprediction\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":"0.025","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"1000001","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-159"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-159"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-159"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-159"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-159"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-159","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='728,-14,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='236,363,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='856,591,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,124,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='396,442,200,200'/><NodePosition Node='-86' Position='1078,418,200,200'/><NodePosition Node='-106' Position='381,188,200,200'/><NodePosition Node='-113' Position='381,283,200,200'/><NodePosition Node='-126' Position='633,513,200,200'/><NodePosition Node='-140' Position='1078,233,200,200'/><NodePosition Node='-147' Position='1081,324,200,200'/><NodePosition Node='-159' Position='933,673,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2020-05-06 17:22:17.254953] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-05-06 17:22:17.261026] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.262492] INFO: moduleinvoker: instruments.v2 运行完成[0.007531s].
[2020-05-06 17:22:17.264844] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-05-06 17:22:17.271975] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.273296] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.008448s].
[2020-05-06 17:22:17.275251] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-05-06 17:22:17.281912] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.283207] INFO: moduleinvoker: input_features.v1 运行完成[0.007948s].
[2020-05-06 17:22:17.292722] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-05-06 17:22:17.298735] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.300165] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007445s].
[2020-05-06 17:22:17.302546] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-05-06 17:22:17.323055] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.324226] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.021681s].
[2020-05-06 17:22:17.326547] INFO: moduleinvoker: join.v3 开始运行..
[2020-05-06 17:22:17.331778] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.332966] INFO: moduleinvoker: join.v3 运行完成[0.006423s].
[2020-05-06 17:22:17.334931] INFO: moduleinvoker: dropnan.v1 开始运行..
[2020-05-06 17:22:17.341885] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.343195] INFO: moduleinvoker: dropnan.v1 运行完成[0.008254s].
[2020-05-06 17:22:17.345444] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2020-05-06 17:22:17.351696] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.483967] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.138509s].
[2020-05-06 17:22:17.485708] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-05-06 17:22:17.490085] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.490931] INFO: moduleinvoker: instruments.v2 运行完成[0.00522s].
[2020-05-06 17:22:17.496200] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-05-06 17:22:17.501587] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.502621] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.006424s].
[2020-05-06 17:22:17.504275] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-05-06 17:22:17.508698] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.509557] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.00528s].
[2020-05-06 17:22:17.511214] INFO: moduleinvoker: dropnan.v1 开始运行..
[2020-05-06 17:22:17.516603] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.517447] INFO: moduleinvoker: dropnan.v1 运行完成[0.006225s].
[2020-05-06 17:22:17.519399] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2020-05-06 17:22:17.525923] INFO: moduleinvoker: 命中缓存
[2020-05-06 17:22:17.526850] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.007453s].
[2020-05-06 17:22:17.567314] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-05-06 17:22:17.570772] INFO: backtest: biglearning backtest:V8.3.4
[2020-05-06 17:22:23.228270] INFO: backtest: product_type:stock by specified
[2020-05-06 17:22:23.356843] INFO: moduleinvoker: cached.v2 开始运行..
[2020-05-06 17:22:34.476850] INFO: backtest: 读取股票行情完成:1564009
[2020-05-06 17:22:43.508657] INFO: moduleinvoker: cached.v2 运行完成[20.151796s].
[2020-05-06 17:22:44.285440] INFO: algo: TradingAlgorithm V1.6.7
[2020-05-06 17:22:45.087585] INFO: algo: trading transform...
[2020-05-06 17:22:49.133802] INFO: Performance: Simulated 202 trading days out of 202.
[2020-05-06 17:22:49.135740] INFO: Performance: first open: 2017-07-03 09:30:00+00:00
[2020-05-06 17:22:49.137337] INFO: Performance: last close: 2018-04-27 15:00:00+00:00
[2020-05-06 17:23:02.625008] INFO: moduleinvoker: backtest.v8 运行完成[45.057692s].
[2020-05-06 17:23:02.626414] INFO: moduleinvoker: trade.v4 运行完成[45.098157s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-4feba79ab978415fa0a35d893a39f05f"}/bigcharts-data-end
[2020-05-06 17:22:19.266456] WARNING tensorflow: The `nb_epoch` argument in `fit` has been renamed `epochs`.
风控执行 2017-07-07
风控执行 2017-07-11
风控执行 2017-07-13
风控执行 2017-09-04
风控执行 2017-12-05
风控执行 2018-04-19
- 收益率4.3%
- 年化收益率5.39%
- 基准收益率2.46%
- 阿尔法0.03
- 贝塔1.13
- 夏普比率0.21
- 胜率0.53
- 盈亏比1.05
- 收益波动率20.8%
- 信息比率0.02
- 最大回撤11.08%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-b0ce46027a884faaa47ac540dcf77e0f"}/bigcharts-data-end