克隆策略
{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-107:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-107:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-161:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-819:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-837:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-779:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-577:input_1","SourceOutputPortId":"-107:data"},{"DestinationInputPortId":"-819:input_data","SourceOutputPortId":"-107:data"},{"DestinationInputPortId":"-1188:training_ds","SourceOutputPortId":"-648:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-577:data_1"},{"DestinationInputPortId":"-1188:features","SourceOutputPortId":"-1475:data"},{"DestinationInputPortId":"-161:instruments","SourceOutputPortId":"-152:data"},{"DestinationInputPortId":"-213:instruments","SourceOutputPortId":"-152:data"},{"DestinationInputPortId":"-142:instruments","SourceOutputPortId":"-152:data"},{"DestinationInputPortId":"-171:input_1","SourceOutputPortId":"-161:data"},{"DestinationInputPortId":"-837:input_data","SourceOutputPortId":"-161:data"},{"DestinationInputPortId":"-812:data1","SourceOutputPortId":"-171:data_1"},{"DestinationInputPortId":"-1188:predict_ds","SourceOutputPortId":"-187:data"},{"DestinationInputPortId":"-648:input_data","SourceOutputPortId":"-779:data"},{"DestinationInputPortId":"-207:data2","SourceOutputPortId":"-812:data"},{"DestinationInputPortId":"-187:input_data","SourceOutputPortId":"-812:data"},{"DestinationInputPortId":"-779:data2","SourceOutputPortId":"-819:data"},{"DestinationInputPortId":"-812:data2","SourceOutputPortId":"-837:data"},{"DestinationInputPortId":"-224:input_data","SourceOutputPortId":"-207:data"},{"DestinationInputPortId":"-207:data1","SourceOutputPortId":"-213:data"},{"DestinationInputPortId":"-1188:test_ds","SourceOutputPortId":"-224:data"},{"DestinationInputPortId":"-142:options_data","SourceOutputPortId":"-1188:predictions"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2016-01-08","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(open, -5)/shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.05), all_quantile(label, 0.95))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特\nclose_0\nrank_swing_volatility_60_0\nswing_volatility_30_0\nta_rsi_14_0\nta_cci_14_0\navg_turn_5\nrank_return_20\navg_amount_5\nrank_avg_turn_5\nmean(turn_0*return_0, 15)\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-107","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"90","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-107"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-107"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-107","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-142","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 2\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.4\n context.options['hold_days'] = 1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n today = data.current_dt.strftime('%Y-%m-%d')\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions ]\n #大盘风控模块,读取风控数据 \n benckmark_risk=context.benckmark_risk[today]\n context.symbol\n #当risk为1时,市场有风险,全部平仓,不再执行其它操作\n if benckmark_risk > 0:\n for instrument in stock_hold_now:\n context.order_target(symbol(instrument), 0)\n print(today,'大盘风控止损触发,全仓卖出')\n return\n \n if context.trading_day_index % 5 != 0:\n return\n \n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n #print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"def bigquant_run(context):\n #在数据准备函数中一次性计算每日的大盘风控条件相比于在handle中每日计算风控条件可以提高回测速度\n # 多取50天的数据便于计算均值(保证回测的第一天均值不为Nan值),其中context.start_date和context.end_date是回测指定的起始时间和终止时间\n start_date= (pd.to_datetime(context.start_date) - datetime.timedelta(days=50)).strftime('%Y-%m-%d') \n df=DataSource('bar1d_index_CN_STOCK_A').read(start_date=start_date,end_date=context.end_date,fields=['close'])\n benckmark_data=df[df.instrument=='000001.HIX']\n #计算上证指数5日涨幅\n benckmark_data['ret5']=benckmark_data['close']/benckmark_data['close'].shift(1)-1\n #计算大盘风控条件,如果5日涨幅小于-4%则设置风险状态risk为1,否则为0\n benckmark_data['risk'] = np.where(benckmark_data['ret5']<-0.04,1,0)\n #修改日期格式为字符串(便于在handle中使用字符串日期索引来查看每日的风险状态)\n benckmark_data['date']=benckmark_data['date'].apply(lambda x:x.strftime('%Y-%m-%d'))\n #设置日期为索引\n benckmark_data.set_index('date',inplace=True)\n #把风控序列输出给全局变量context.benckmark_risk\n context.benckmark_risk=benckmark_data['risk']\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"500000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-142"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-142"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-142"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-142"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-142"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-142","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-648","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-648"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-648"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-648","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-577","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n input_df = input_1.read_df().reset_index(drop='True')\n import talib\n def cal_macd(df):\n # 取出close_0列的数据转化为float\n close = [float(x) for x in df['close_0']]\n # 调用talib计算MACD指标\n df['MACD'],df['MACDsignal'],df['MACDhist'] = talib.MACD(np.array(close),\n fastperiod=6, slowperiod=12, signalperiod=9)\n return df[['date','instrument','MACD','MACDsignal','MACDhist']]\n \n result = input_df.groupby('instrument').apply(cal_macd)\n \n data_1 = DataSource.write_df(result)\n return Outputs(data_1=data_1, data_2=None, data_3=None)","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-577"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-577"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-577"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-577","OutputType":null},{"Name":"data_2","NodeId":"-577","OutputType":null},{"Name":"data_3","NodeId":"-577","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1475","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nrank_swing_volatility_60_0\nswing_volatility_30_0\nta_rsi_14_0\n#ta_cci_14_0\n#avg_turn_5\n#rank_return_20\n#avg_amount_5\n#rank_avg_turn_5\n#mean(turn_0*return_0, 15)\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-1475"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1475","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-152","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-01-04","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-09-10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-152"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-152","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-161","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"90","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-161"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-161"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-161","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-171","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n input_df = input_1.read_df().reset_index(drop='True')\n import talib\n def cal_macd(df):\n # 取出close_0列的数据转化为float\n close = [float(x) for x in df['close_0']]\n # 调用talib计算MACD指标\n df['MACD'],df['MACDsignal'],df['MACDhist'] = talib.MACD(np.array(close),\n fastperiod=6, slowperiod=12, signalperiod=9)\n return df[['date','instrument','MACD','MACDsignal','MACDhist']]\n \n result = input_df.groupby('instrument').apply(cal_macd)\n \n data_1 = DataSource.write_df(result)\n return Outputs(data_1=data_1, data_2=None, data_3=None)","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-171"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-171"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-171"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-171","OutputType":null},{"Name":"data_2","NodeId":"-171","OutputType":null},{"Name":"data_3","NodeId":"-171","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-187","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-187"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-187"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-187","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":22,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-779","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-779"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-779"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-779","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-812","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-812"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-812"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-812","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":23,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-819","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-819"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-819"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-819","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":24,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-837","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-837"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-837"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-837","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":26,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-207","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-207"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-207"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-207","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-213","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(open, -5)/shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.05), all_quantile(label, 0.95))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-213"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-213","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-224","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-224"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-224"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-224","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1188","ModuleId":"BigQuantSpace.stock_ranker.stock_ranker-v2","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":"5","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":"1000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":"10","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":"0.1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":"1023","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":"1","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"slim_data","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-1188"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1188"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-1188"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-1188"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_model","NodeId":"-1188"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-1188"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-1188","OutputType":null},{"Name":"predictions","NodeId":"-1188","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='-213,-92,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='-345,80,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='543,-95,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='-318,233,200,200'/><NodePosition Node='-107' Position='12,33,200,200'/><NodePosition Node='-142' Position='253,897,200,200'/><NodePosition Node='-648' Position='92,420,200,200'/><NodePosition Node='-577' Position='8,134,200,200'/><NodePosition Node='-1475' Position='346,569,200,200'/><NodePosition Node='-152' Position='1080,-152,200,200'/><NodePosition Node='-161' Position='1077,0,200,200'/><NodePosition Node='-171' Position='1088,128,200,200'/><NodePosition Node='-187' Position='1062,433,200,200'/><NodePosition Node='-779' Position='-159,326,200,200'/><NodePosition Node='-812' Position='1078,276,200,200'/><NodePosition Node='-819' Position='49,242,200,200'/><NodePosition Node='-837' Position='1406,174,200,200'/><NodePosition Node='-207' Position='668,307,200,200'/><NodePosition Node='-213' Position='676,107,200,200'/><NodePosition Node='-224' Position='668,413,200,200'/><NodePosition Node='-1188' Position='249,681,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
In [13]:
# 本代码由可视化策略环境自动生成 2020年9月11日 10:56
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m6_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
input_df = input_1.read_df().reset_index(drop='True')
import talib
def cal_macd(df):
# 取出close_0列的数据转化为float
close = [float(x) for x in df['close_0']]
# 调用talib计算MACD指标
df['MACD'],df['MACDsignal'],df['MACDhist'] = talib.MACD(np.array(close),
fastperiod=6, slowperiod=12, signalperiod=9)
return df[['date','instrument','MACD','MACDsignal','MACDhist']]
result = input_df.groupby('instrument').apply(cal_macd)
data_1 = DataSource.write_df(result)
return Outputs(data_1=data_1, data_2=None, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m6_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m20_run_bigquant_run(input_1, input_2, input_3):
# 示例代码如下。在这里编写您的代码
input_df = input_1.read_df().reset_index(drop='True')
import talib
def cal_macd(df):
# 取出close_0列的数据转化为float
close = [float(x) for x in df['close_0']]
# 调用talib计算MACD指标
df['MACD'],df['MACDsignal'],df['MACDhist'] = talib.MACD(np.array(close),
fastperiod=6, slowperiod=12, signalperiod=9)
return df[['date','instrument','MACD','MACDsignal','MACDhist']]
result = input_df.groupby('instrument').apply(cal_macd)
data_1 = DataSource.write_df(result)
return Outputs(data_1=data_1, data_2=None, data_3=None)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m20_post_run_bigquant_run(outputs):
return outputs
# 回测引擎:初始化函数,只执行一次
def m19_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 2
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.4
context.options['hold_days'] = 1
# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
today = data.current_dt.strftime('%Y-%m-%d')
stock_hold_now = [equity.symbol for equity in context.portfolio.positions ]
#大盘风控模块,读取风控数据
benckmark_risk=context.benckmark_risk[today]
context.symbol
#当risk为1时,市场有风险,全部平仓,不再执行其它操作
if benckmark_risk > 0:
for instrument in stock_hold_now:
context.order_target(symbol(instrument), 0)
print(today,'大盘风控止损触发,全仓卖出')
return
if context.trading_day_index % 5 != 0:
return
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.perf_tracker.position_tracker.positions.items()}
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
#print('rank order for sell %s' % instruments)
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <= 0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
context.order_value(context.symbol(instrument), cash)
def m19_prepare_bigquant_run(context):
#在数据准备函数中一次性计算每日的大盘风控条件相比于在handle中每日计算风控条件可以提高回测速度
# 多取50天的数据便于计算均值(保证回测的第一天均值不为Nan值),其中context.start_date和context.end_date是回测指定的起始时间和终止时间
start_date= (pd.to_datetime(context.start_date) - datetime.timedelta(days=50)).strftime('%Y-%m-%d')
df=DataSource('bar1d_index_CN_STOCK_A').read(start_date=start_date,end_date=context.end_date,fields=['close'])
benckmark_data=df[df.instrument=='000001.HIX']
#计算上证指数5日涨幅
benckmark_data['ret5']=benckmark_data['close']/benckmark_data['close'].shift(1)-1
#计算大盘风控条件,如果5日涨幅小于-4%则设置风险状态risk为1,否则为0
benckmark_data['risk'] = np.where(benckmark_data['ret5']<-0.04,1,0)
#修改日期格式为字符串(便于在handle中使用字符串日期索引来查看每日的风险状态)
benckmark_data['date']=benckmark_data['date'].apply(lambda x:x.strftime('%Y-%m-%d'))
#设置日期为索引
benckmark_data.set_index('date',inplace=True)
#把风控序列输出给全局变量context.benckmark_risk
context.benckmark_risk=benckmark_data['risk']
m1 = M.instruments.v2(
start_date='2016-01-08',
end_date='2019-01-01',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m2 = M.advanced_auto_labeler.v2(
instruments=m1.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(open, -5)/shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.05), all_quantile(label, 0.95))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=True
)
m3 = M.input_features.v1(
features="""# #号开始的表示注释
# 多个特征,每行一个,可以包含基础特征和衍生特
close_0
rank_swing_volatility_60_0
swing_volatility_30_0
ta_rsi_14_0
ta_cci_14_0
avg_turn_5
rank_return_20
avg_amount_5
rank_avg_turn_5
mean(turn_0*return_0, 15)
"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=90
)
m6 = M.cached.v3(
input_1=m15.data,
run=m6_run_bigquant_run,
post_run=m6_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m7 = M.join.v3(
data1=m2.data,
data2=m6.data_1,
on='date,instrument',
how='inner',
sort=False
)
m24 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False,
user_functions={}
)
m10 = M.join.v3(
data1=m7.data,
data2=m24.data,
on='date,instrument',
how='inner',
sort=False
)
m5 = M.dropnan.v2(
input_data=m10.data
)
m12 = M.input_features.v1(
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
rank_swing_volatility_60_0
swing_volatility_30_0
ta_rsi_14_0
#ta_cci_14_0
#avg_turn_5
#rank_return_20
#avg_amount_5
#rank_avg_turn_5
#mean(turn_0*return_0, 15)
"""
)
m16 = M.instruments.v2(
start_date='2019-01-04',
end_date='2020-09-10',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m18 = M.general_feature_extractor.v7(
instruments=m16.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=90
)
m20 = M.cached.v3(
input_1=m18.data,
run=m20_run_bigquant_run,
post_run=m20_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m26 = M.derived_feature_extractor.v3(
input_data=m18.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False,
user_functions={}
)
m23 = M.join.v3(
data1=m20.data_1,
data2=m26.data,
on='date,instrument',
how='inner',
sort=False
)
m22 = M.dropnan.v2(
input_data=m23.data
)
m9 = M.advanced_auto_labeler.v2(
instruments=m16.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(open, -5)/shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.05), all_quantile(label, 0.95))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=True
)
m8 = M.join.v3(
data1=m9.data,
data2=m23.data,
on='date,instrument',
how='inner',
sort=False
)
m11 = M.dropnan.v2(
input_data=m8.data
)
m4 = M.stock_ranker.v2(
training_ds=m5.data,
features=m12.data,
test_ds=m11.data,
predict_ds=m22.data,
learning_algorithm='排序',
number_of_leaves=5,
minimum_docs_per_leaf=1000,
number_of_trees=10,
learning_rate=0.1,
max_bins=1023,
feature_fraction=1,
data_row_fraction=1,
ndcg_discount_base=1,
slim_data=True
)
m19 = M.trade.v4(
instruments=m16.data,
options_data=m4.predictions,
start_date='',
end_date='',
initialize=m19_initialize_bigquant_run,
handle_data=m19_handle_data_bigquant_run,
prepare=m19_prepare_bigquant_run,
volume_limit=0.025,
order_price_field_buy='open',
order_price_field_sell='open',
capital_base=500000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='真实价格',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark=''
)
日志 64 条,错误日志
0 条
[2020-09-11 10:54:20.634586] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-09-11 10:54:20.691262] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.692581] INFO: moduleinvoker: instruments.v2 运行完成[0.057991s].
[2020-09-11 10:54:20.694554] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-09-11 10:54:20.700092] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.701858] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007286s].
[2020-09-11 10:54:20.703543] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-09-11 10:54:20.710442] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.711445] INFO: moduleinvoker: input_features.v1 运行完成[0.007898s].
[2020-09-11 10:54:20.717938] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-09-11 10:54:20.723413] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.724214] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.006275s].
[2020-09-11 10:54:20.727189] INFO: moduleinvoker: cached.v3 开始运行..
[2020-09-11 10:54:20.732355] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.733158] INFO: moduleinvoker: cached.v3 运行完成[0.005969s].
[2020-09-11 10:54:20.734620] INFO: moduleinvoker: join.v3 开始运行..
[2020-09-11 10:54:20.784402] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.785751] INFO: moduleinvoker: join.v3 运行完成[0.05112s].
[2020-09-11 10:54:20.787703] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-09-11 10:54:20.801429] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.802653] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.014939s].
[2020-09-11 10:54:20.804577] INFO: moduleinvoker: join.v3 开始运行..
[2020-09-11 10:54:20.810808] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.811871] INFO: moduleinvoker: join.v3 运行完成[0.007294s].
[2020-09-11 10:54:20.813583] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-09-11 10:54:20.819573] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.820426] INFO: moduleinvoker: dropnan.v2 运行完成[0.00684s].
[2020-09-11 10:54:20.821770] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-09-11 10:54:20.826921] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.827866] INFO: moduleinvoker: input_features.v1 运行完成[0.006098s].
[2020-09-11 10:54:20.829360] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-09-11 10:54:20.834972] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.884957] INFO: moduleinvoker: instruments.v2 运行完成[0.055563s].
[2020-09-11 10:54:20.905249] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-09-11 10:54:20.914490] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.915660] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.010422s].
[2020-09-11 10:54:20.918311] INFO: moduleinvoker: cached.v3 开始运行..
[2020-09-11 10:54:20.923228] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.924108] INFO: moduleinvoker: cached.v3 运行完成[0.005796s].
[2020-09-11 10:54:20.925625] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-09-11 10:54:20.932125] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.933204] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007567s].
[2020-09-11 10:54:20.934780] INFO: moduleinvoker: join.v3 开始运行..
[2020-09-11 10:54:20.939720] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.940621] INFO: moduleinvoker: join.v3 运行完成[0.005837s].
[2020-09-11 10:54:20.984678] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-09-11 10:54:20.991622] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:20.993203] INFO: moduleinvoker: dropnan.v2 运行完成[0.008568s].
[2020-09-11 10:54:20.995977] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-09-11 10:54:21.002881] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:21.004129] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.008148s].
[2020-09-11 10:54:21.005936] INFO: moduleinvoker: join.v3 开始运行..
[2020-09-11 10:54:21.013497] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:21.014510] INFO: moduleinvoker: join.v3 运行完成[0.008578s].
[2020-09-11 10:54:21.016048] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-09-11 10:54:21.023517] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:21.024311] INFO: moduleinvoker: dropnan.v2 运行完成[0.00826s].
[2020-09-11 10:54:21.025772] INFO: moduleinvoker: stock_ranker.v2 开始运行..
[2020-09-11 10:54:21.043423] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:21.193249] INFO: moduleinvoker: stock_ranker.v2 运行完成[0.167459s].
[2020-09-11 10:54:21.288282] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-09-11 10:54:21.295727] INFO: moduleinvoker: 命中缓存
[2020-09-11 10:54:23.379855] INFO: moduleinvoker: backtest.v8 运行完成[2.09159s].
[2020-09-11 10:54:23.385767] INFO: moduleinvoker: trade.v4 运行完成[2.190288s].
In [14]:
#m13.result.best_params_
In [15]:
#dt = m4.predictions.read_df()[-30000:]
#dt.to_csv('3.csv')