滚动训练模块优化(临时解决办法)

策略分享
标签: #<Tag:0x00007f49277e7738>

(XiaoyuDu) #1

滚动训练模块的优化

  • 错误的发现和展示

  • 错误原因

  • 错误的解决方法

1.错误的发现和展示

感谢用户qci向我们昨天反馈的问题;

他发现在进行滚动训练的时候会出现持仓占比超过100%的情况,持仓占比的计算公式是[abs(空头市值)+abs(多头市值)]/(现金+空头市值+多头市值),当出现空单(做空卖出)时就会出现大于100%,因此怀疑是有空单;
而在交易记录里面也多有空单的记录,持仓中也有负数记录:

正常的模板里面的交易过程时是不会发生空单现象的,这里有一个bug。

因此他在添加了 set_long_only() 后果然出现了如下错误,违背了只准做多的限制,看来确实有空单:

以上就是错误发现和展示的过程


2. 错误原因

错误原因是因为我们将计算特征的时候需要将向前取一定天数的数据,如下图
image
而这部分数据将在接下来的预测模块中也会被预测,只不过如果 不是滚动训练的话,模型在回测的时候有自己的回测区间,不会将这一部分纳入考虑;
但是,在滚动训练中,一切前面模块设置的回测时间都失效,将被滚动训练模块接管,而在内部合并预测结果的时候,这向前取数据的重合就会让我们正常的滚动的预测变成重叠的预测,一个股票有可能会在一日内被多次卖出,这就造成了超卖,卖空现象。


3. 错误的解决方法

鉴于这个错误并非系统性的错误,而是一个数据重叠的局部性错误,我们在滚动训练模块的数据拼接前读取正常的开始日,通过这个开始日对数据进行截断即可:我们在原有模块上更新替换了以下两行代码
image
image

解决的具体代码如下(我们添加了两行):

(有兴趣看代码的用户可以阅读以下内容)


点击查看
def bigquant_run(
    bq_graph,
    inputs,
    trading_days_market='CN', # 使用那个市场的交易日历
    train_instruments_mid='m1', # 训练数据 证券代码列表 模块id
    test_instruments_mid='m9', # 测试数据 证券代码列表 模块id
    predict_mid='m8', # 预测 模块id
    trade_mid='m19', # 回测 模块id
    start_date='2012-01-01', # 数据开始日期
    end_date=T.live_run_param('trading_date', '2019-02-15'), # 数据结束日期
    train_update_days=250, # 更新周期,按交易日计算,每多少天更新一次
    train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数
    train_data_min_days=500, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数
    train_data_max_days=500, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期
    rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制
):


    def merge_datasources(input_1):
        # !!!! 我们在这里添加了一行用于控制 合并表的数据截断
        df_list = [ds[0].read_df().set_index('date').ix[ds[1]:].reset_index() for ds in input_1]

        df = pd.concat(df_list)
        instrument_data = {
            'start_date': df['date'].min().strftime('%Y-%m-%d'),
            'end_date': df['date'].max().strftime('%Y-%m-%d'),
            'instruments': list(set(df['instrument'])),
        }
        return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))



    def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):
        # 是否实盘模式
        tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])
        is_live_run = T.live_run_param('trading_date', None) is not None

        if is_live_run and train_update_days_for_live:
            train_update_days = train_update_days_for_live

        rollings = []
        train_end_date = train_data_min_days
        while train_end_date < len(tdays):
            if train_data_max_days is not None:
                train_start_date = max(train_end_date - train_data_max_days, 0)
            else:
                train_start_date = start_date
            rollings.append({
                'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),
                'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),
                'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),
                'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),
            })
            train_end_date += train_update_days

        if not rollings:
            raise Exception('没有滚动需要执行,请检查配置')

        if is_live_run and rolling_count_for_live:
            rollings = rollings[-rolling_count_for_live:]

        return rollings

    g = bq_graph

    rolling_dates = gen_rolling_dates(
        trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)

    # 训练和预测
    results = []
    for rolling in rolling_dates:
        parameters = {}
        # 先禁用回测
        parameters[trade_mid + '.__enabled__'] = False
        parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']
        parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']
        parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']
        parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']
        # print('------ rolling_train:', parameters)
        results.append(g.run(parameters))

    # 合并预测结果并回测

    # !!!! 我们在这里添加了一行用于读取合并表时应该采用的数据的合理开始时间
    mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions,result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])
    parameters = {}
    parameters['*.__enabled__'] = False
    parameters[trade_mid + '.__enabled__'] = True
    parameters[trade_mid + '.instruments'] = mx.instrument_data
    parameters[trade_mid + '.options_data'] = mx.data

    trade = g.run(parameters)

    return {'rollings': results, 'trade': trade}

解读已经加在注释当中


这几日需要用滚动训练模块可以粘贴上面的代码替代原代码再自行修改参数,或者克隆修改好的策略复制滚动训练模块(分享在后面的)我们将抓紧时间对滚动训练模块进行优化。

克隆策略

    {"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-560:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-560:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-567:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-574:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-581:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-591:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-574:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-591:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-567:input_data","SourceOutputPortId":"-560:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-567:data"},{"DestinationInputPortId":"-581:input_data","SourceOutputPortId":"-574:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-581:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2012-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2016-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -22) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\nrank_avg_amount_5\nrank_avg_turn_5\nrank_volatility_5_0\nrank_swing_volatility_5_0\nrank_avg_mf_net_amount_5\npe_ttm_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"OutputPortsInternal":[{"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","OutputType":null},{"Name":"feature_gains","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2019-02-15","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-560","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"90","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-560"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-560"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-560","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-567","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-567"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-567"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-567","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-574","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"90","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-574"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-574"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-574","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-581","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-581"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-581"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-581","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-591","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n \n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 11\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 2\n context.set_long_only()\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-591"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-591"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-591"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-591"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-591"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-591","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-613","ModuleId":"BigQuantSpace.hyper_rolling_train.hyper_rolling_train-v1","ModuleParameters":[{"Name":"run","Value":"def bigquant_run(\n bq_graph,\n inputs,\n trading_days_market='CN', # 使用那个市场的交易日历\n train_instruments_mid='m1', # 训练数据 证券代码列表 模块id\n test_instruments_mid='m9', # 测试数据 证券代码列表 模块id\n predict_mid='m8', # 预测 模块id\n trade_mid='m19', # 回测 模块id\n start_date='2012-01-01', # 数据开始日期\n end_date=T.live_run_param('trading_date', '2019-02-15'), # 数据结束日期\n train_update_days=250, # 更新周期,按交易日计算,每多少天更新一次\n train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数\n train_data_min_days=500, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数\n train_data_max_days=500, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期\n rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制\n):\n def merge_datasources(input_1):\n \n df_list = [ds[0].read_df().set_index('date').ix[ds[1]:].reset_index() for ds in input_1]\n #print([k for k in df_list])\n df = pd.concat(df_list)\n instrument_data = {\n 'start_date': df['date'].min().strftime('%Y-%m-%d'),\n 'end_date': df['date'].max().strftime('%Y-%m-%d'),\n 'instruments': list(set(df['instrument'])),\n }\n return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))\n\n def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):\n # 是否实盘模式\n tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])\n is_live_run = T.live_run_param('trading_date', None) is not None\n\n if is_live_run and train_update_days_for_live:\n train_update_days = train_update_days_for_live\n\n rollings = []\n train_end_date = train_data_min_days\n while train_end_date < len(tdays):\n if train_data_max_days is not None:\n train_start_date = max(train_end_date - train_data_max_days, 0)\n else:\n train_start_date = start_date\n rollings.append({\n 'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),\n 'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),\n 'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),\n 'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),\n })\n train_end_date += train_update_days\n\n if not rollings:\n raise Exception('没有滚动需要执行,请检查配置')\n\n if is_live_run and rolling_count_for_live:\n rollings = rollings[-rolling_count_for_live:]\n\n return rollings\n\n g = bq_graph\n\n rolling_dates = gen_rolling_dates(\n trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)\n\n # 训练和预测\n results = []\n for rolling in rolling_dates:\n parameters = {}\n # 先禁用回测\n parameters[trade_mid + '.__enabled__'] = False\n parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']\n parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']\n parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']\n parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']\n # print('------ rolling_train:', parameters)\n results.append(g.run(parameters))\n\n # 合并预测结果并回测\n mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions,result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])\n parameters = {}\n parameters['*.__enabled__'] = False\n parameters[trade_mid + '.__enabled__'] = True\n parameters[trade_mid + '.instruments'] = mx.instrument_data\n parameters[trade_mid + '.options_data'] = mx.data\n\n trade = g.run(parameters)\n\n return {'rollings': results, 'trade': trade}\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"run_now","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"bq_graph","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"bq_graph_port","NodeId":"-613"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-613"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-613"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-613"}],"OutputPortsInternal":[{"Name":"result","NodeId":"-613","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='207,75,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,194,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='585,-25,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='639,561,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1071,125,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><NodePosition Node='-86' Position='1160,453,200,200'/><NodePosition Node='-560' Position='381,188,200,200'/><NodePosition Node='-567' Position='385,280,200,200'/><NodePosition Node='-574' Position='1078,236,200,200'/><NodePosition Node='-581' Position='1079.6846923828125,325.68463134765625,200,200'/><NodePosition Node='-591' Position='1172,773,200,200'/><NodePosition Node='-613' Position='115.73843383789062,638.9462280273438,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [2]:
    # 本代码由可视化策略环境自动生成 2019年2月19日 14:23
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
        
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 11
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.options['hold_days'] = 2
        context.set_long_only()
    
    
    g = T.Graph({
    
        'm1': 'M.instruments.v2',
        'm1.start_date': '2012-01-01',
        'm1.end_date': '2016-12-31',
        'm1.market': 'CN_STOCK_A',
        'm1.instrument_list': '',
        'm1.max_count': 0,
    
        'm2': 'M.advanced_auto_labeler.v2',
        'm2.instruments': T.Graph.OutputPort('m1.data'),
        'm2.label_expr': """# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -22) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        'm2.start_date': '',
        'm2.end_date': '',
        'm2.benchmark': '000300.SHA',
        'm2.drop_na_label': True,
        'm2.cast_label_int': True,
    
        'm3': 'M.input_features.v1',
        'm3.features': """# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    return_5
    return_10
    return_20
    avg_amount_0/avg_amount_5
    avg_amount_5/avg_amount_20
    rank_avg_amount_0/rank_avg_amount_5
    rank_avg_amount_5/rank_avg_amount_10
    rank_return_0
    rank_return_5
    rank_return_10
    rank_return_0/rank_return_5
    rank_return_5/rank_return_10
    rank_avg_amount_5
    rank_avg_turn_5
    rank_volatility_5_0
    rank_swing_volatility_5_0
    rank_avg_mf_net_amount_5
    pe_ttm_0""",
    
        'm15': 'M.general_feature_extractor.v7',
        'm15.instruments': T.Graph.OutputPort('m1.data'),
        'm15.features': T.Graph.OutputPort('m3.data'),
        'm15.start_date': '',
        'm15.end_date': '',
        'm15.before_start_days': 90,
    
        'm16': 'M.derived_feature_extractor.v3',
        'm16.input_data': T.Graph.OutputPort('m15.data'),
        'm16.features': T.Graph.OutputPort('m3.data'),
        'm16.date_col': 'date',
        'm16.instrument_col': 'instrument',
        'm16.drop_na': False,
        'm16.remove_extra_columns': False,
    
        'm7': 'M.join.v3',
        'm7.data1': T.Graph.OutputPort('m2.data'),
        'm7.data2': T.Graph.OutputPort('m16.data'),
        'm7.on': 'date,instrument',
        'm7.how': 'inner',
        'm7.sort': False,
    
        'm13': 'M.dropnan.v1',
        'm13.input_data': T.Graph.OutputPort('m7.data'),
    
        'm6': 'M.stock_ranker_train.v5',
        'm6.training_ds': T.Graph.OutputPort('m13.data'),
        'm6.features': T.Graph.OutputPort('m3.data'),
        'm6.learning_algorithm': '排序',
        'm6.number_of_leaves': 30,
        'm6.minimum_docs_per_leaf': 1000,
        'm6.number_of_trees': 20,
        'm6.learning_rate': 0.1,
        'm6.max_bins': 1023,
        'm6.feature_fraction': 1,
        'm6.m_lazy_run': False,
    
        'm9': 'M.instruments.v2',
        'm9.start_date': T.live_run_param('trading_date', '2017-01-01'),
        'm9.end_date': T.live_run_param('trading_date', '2019-02-15'),
        'm9.market': 'CN_STOCK_A',
        'm9.instrument_list': '',
        'm9.max_count': 0,
    
        'm17': 'M.general_feature_extractor.v7',
        'm17.instruments': T.Graph.OutputPort('m9.data'),
        'm17.features': T.Graph.OutputPort('m3.data'),
        'm17.start_date': '',
        'm17.end_date': '',
        'm17.before_start_days': 90,
    
        'm18': 'M.derived_feature_extractor.v3',
        'm18.input_data': T.Graph.OutputPort('m17.data'),
        'm18.features': T.Graph.OutputPort('m3.data'),
        'm18.date_col': 'date',
        'm18.instrument_col': 'instrument',
        'm18.drop_na': False,
        'm18.remove_extra_columns': False,
    
        'm14': 'M.dropnan.v1',
        'm14.input_data': T.Graph.OutputPort('m18.data'),
    
        'm8': 'M.stock_ranker_predict.v5',
        'm8.model': T.Graph.OutputPort('m6.model'),
        'm8.data': T.Graph.OutputPort('m14.data'),
        'm8.m_lazy_run': False,
    
        'm19': 'M.trade.v4',
        'm19.instruments': T.Graph.OutputPort('m9.data'),
        'm19.options_data': T.Graph.OutputPort('m8.predictions'),
        'm19.start_date': '',
        'm19.end_date': '',
        'm19.handle_data': m19_handle_data_bigquant_run,
        'm19.prepare': m19_prepare_bigquant_run,
        'm19.initialize': m19_initialize_bigquant_run,
        'm19.volume_limit': 0.025,
        'm19.order_price_field_buy': 'open',
        'm19.order_price_field_sell': 'close',
        'm19.capital_base': 1000000,
        'm19.auto_cancel_non_tradable_orders': True,
        'm19.data_frequency': 'daily',
        'm19.price_type': '后复权',
        'm19.product_type': '股票',
        'm19.plot_charts': True,
        'm19.backtest_only': False,
        'm19.benchmark': '',
    })
    
    # g.run({})
    
    
    def m20_run_bigquant_run(
        bq_graph,
        inputs,
        trading_days_market='CN', # 使用那个市场的交易日历
        train_instruments_mid='m1', # 训练数据 证券代码列表 模块id
        test_instruments_mid='m9', # 测试数据 证券代码列表 模块id
        predict_mid='m8', # 预测 模块id
        trade_mid='m19', # 回测 模块id
        start_date='2012-01-01', # 数据开始日期
        end_date=T.live_run_param('trading_date', '2019-02-15'), # 数据结束日期
        train_update_days=250, # 更新周期,按交易日计算,每多少天更新一次
        train_update_days_for_live=None, #模拟实盘模式下的更新周期,按交易日计算,每多少天更新一次。如果需要在模拟实盘阶段使用不同的模型更新周期,可以设置这个参数
        train_data_min_days=500, # 最小数据天数,按交易日计算,所以第一个滚动的结束日期是 从开始日期到开始日期+最小数据天数
        train_data_max_days=500, # 最大数据天数,按交易日计算,0,表示没有限制,否则每一个滚动的开始日期=max(此滚动的结束日期-最大数据天数, 开始日期
        rolling_count_for_live=1, #实盘模式下滚动次数,模拟实盘模式下,取最后多少次滚动。一般在模拟实盘模式下,只用到最后一次滚动训练的模型,这里可以设置为1;如果你的滚动训练数据时间段很短,以至于期间可能没有训练数据,这里可以设置大一点。0表示没有限制
    ):
        def merge_datasources(input_1):
            
            df_list = [ds[0].read_df().set_index('date').ix[ds[1]:].reset_index() for ds in input_1]
            #print([k for  k in df_list])
            df = pd.concat(df_list)
            instrument_data = {
                'start_date': df['date'].min().strftime('%Y-%m-%d'),
                'end_date': df['date'].max().strftime('%Y-%m-%d'),
                'instruments': list(set(df['instrument'])),
            }
            return Outputs(data=DataSource.write_df(df), instrument_data=DataSource.write_pickle(instrument_data))
    
        def gen_rolling_dates(trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live):
            # 是否实盘模式
            tdays = list(D.trading_days(market=trading_days_market, start_date=start_date, end_date=end_date)['date'])
            is_live_run = T.live_run_param('trading_date', None) is not None
    
            if is_live_run and train_update_days_for_live:
                train_update_days = train_update_days_for_live
    
            rollings = []
            train_end_date = train_data_min_days
            while train_end_date < len(tdays):
                if train_data_max_days is not None:
                    train_start_date = max(train_end_date - train_data_max_days, 0)
                else:
                    train_start_date = start_date
                rollings.append({
                    'train_start_date': tdays[train_start_date].strftime('%Y-%m-%d'),
                    'train_end_date': tdays[train_end_date - 1].strftime('%Y-%m-%d'),
                    'test_start_date': tdays[train_end_date].strftime('%Y-%m-%d'),
                    'test_end_date': tdays[min(train_end_date + train_update_days, len(tdays)) - 1].strftime('%Y-%m-%d'),
                })
                train_end_date += train_update_days
    
            if not rollings:
                raise Exception('没有滚动需要执行,请检查配置')
    
            if is_live_run and rolling_count_for_live:
                rollings = rollings[-rolling_count_for_live:]
    
            return rollings
    
        g = bq_graph
    
        rolling_dates = gen_rolling_dates(
            trading_days_market, start_date, end_date, train_update_days, train_update_days_for_live, train_data_min_days, train_data_max_days, rolling_count_for_live)
    
        # 训练和预测
        results = []
        for rolling in rolling_dates:
            parameters = {}
            # 先禁用回测
            parameters[trade_mid + '.__enabled__'] = False
            parameters[train_instruments_mid + '.start_date'] = rolling['train_start_date']
            parameters[train_instruments_mid + '.end_date'] = rolling['train_end_date']
            parameters[test_instruments_mid + '.start_date'] = rolling['test_start_date']
            parameters[test_instruments_mid + '.end_date'] = rolling['test_end_date']
            # print('------ rolling_train:', parameters)
            results.append(g.run(parameters))
    
        # 合并预测结果并回测
        mx = M.cached.v3(run=merge_datasources, input_1=[[result[predict_mid].predictions,result[test_instruments_mid].data.read_pickle()['start_date']] for result in results])
        parameters = {}
        parameters['*.__enabled__'] = False
        parameters[trade_mid + '.__enabled__'] = True
        parameters[trade_mid + '.instruments'] = mx.instrument_data
        parameters[trade_mid + '.options_data'] = mx.data
    
        trade = g.run(parameters)
    
        return {'rollings': results, 'trade': trade}
    
    
    m20 = M.hyper_rolling_train.v1(
        run=m20_run_bigquant_run,
        run_now=True,
        bq_graph=g
    )
    
    [2019-02-19 11:08:27.600418] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:27.607049] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.607955] INFO: bigquant: instruments.v2 运行完成[0.007567s].
    [2019-02-19 11:08:27.610079] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:27.614489] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.615302] INFO: bigquant: instruments.v2 运行完成[0.005271s].
    [2019-02-19 11:08:27.617496] INFO: bigquant: input_features.v1 开始运行..
    [2019-02-19 11:08:27.621291] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.622001] INFO: bigquant: input_features.v1 运行完成[0.00451s].
    [2019-02-19 11:08:27.624446] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
    [2019-02-19 11:08:27.630366] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.631459] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.007002s].
    [2019-02-19 11:08:27.636648] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:27.652748] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.655183] INFO: bigquant: general_feature_extractor.v7 运行完成[0.018519s].
    [2019-02-19 11:08:27.661826] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:27.667502] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.668375] INFO: bigquant: general_feature_extractor.v7 运行完成[0.006589s].
    [2019-02-19 11:08:27.670754] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:27.683427] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.684410] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.013652s].
    [2019-02-19 11:08:27.686541] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:27.696738] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.697598] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.011054s].
    [2019-02-19 11:08:27.700052] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:27.704049] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.704784] INFO: bigquant: dropnan.v1 运行完成[0.004747s].
    [2019-02-19 11:08:27.707059] INFO: bigquant: join.v3 开始运行..
    [2019-02-19 11:08:27.711102] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.711782] INFO: bigquant: join.v3 运行完成[0.004763s].
    [2019-02-19 11:08:27.713557] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:27.717477] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.718191] INFO: bigquant: dropnan.v1 运行完成[0.004629s].
    [2019-02-19 11:08:27.720482] INFO: bigquant: stock_ranker_train.v5 开始运行..
    [2019-02-19 11:08:27.726431] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.727395] INFO: bigquant: stock_ranker_train.v5 运行完成[0.006912s].
    [2019-02-19 11:08:27.730268] INFO: bigquant: stock_ranker_predict.v5 开始运行..
    [2019-02-19 11:08:27.740412] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.741638] INFO: bigquant: stock_ranker_predict.v5 运行完成[0.011364s].
    [2019-02-19 11:08:27.744556] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:27.750838] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.752129] INFO: bigquant: instruments.v2 运行完成[0.00749s].
    [2019-02-19 11:08:27.754640] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:27.760756] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.762215] INFO: bigquant: instruments.v2 运行完成[0.007552s].
    [2019-02-19 11:08:27.764721] INFO: bigquant: input_features.v1 开始运行..
    [2019-02-19 11:08:27.768925] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.769754] INFO: bigquant: input_features.v1 运行完成[0.005034s].
    [2019-02-19 11:08:27.772136] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
    [2019-02-19 11:08:27.789942] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.791551] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.019457s].
    [2019-02-19 11:08:27.797159] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:27.802657] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.803586] INFO: bigquant: general_feature_extractor.v7 运行完成[0.006436s].
    [2019-02-19 11:08:27.809919] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:27.815687] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.816789] INFO: bigquant: general_feature_extractor.v7 运行完成[0.006868s].
    [2019-02-19 11:08:27.819384] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:27.825140] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.826079] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.006627s].
    [2019-02-19 11:08:27.828334] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:27.833267] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.834102] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.005705s].
    [2019-02-19 11:08:27.836698] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:27.848615] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.849874] INFO: bigquant: dropnan.v1 运行完成[0.013154s].
    [2019-02-19 11:08:27.852371] INFO: bigquant: join.v3 开始运行..
    [2019-02-19 11:08:27.863040] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.864312] INFO: bigquant: join.v3 运行完成[0.011939s].
    [2019-02-19 11:08:27.866351] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:27.871166] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.872396] INFO: bigquant: dropnan.v1 运行完成[0.00603s].
    [2019-02-19 11:08:27.874758] INFO: bigquant: stock_ranker_train.v5 开始运行..
    [2019-02-19 11:08:27.882659] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.883847] INFO: bigquant: stock_ranker_train.v5 运行完成[0.009073s].
    [2019-02-19 11:08:27.886279] INFO: bigquant: stock_ranker_predict.v5 开始运行..
    [2019-02-19 11:08:27.893303] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.894407] INFO: bigquant: stock_ranker_predict.v5 运行完成[0.00812s].
    [2019-02-19 11:08:27.897486] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:27.901872] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.902595] INFO: bigquant: instruments.v2 运行完成[0.00512s].
    [2019-02-19 11:08:27.905981] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:27.909904] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.911042] INFO: bigquant: instruments.v2 运行完成[0.005066s].
    [2019-02-19 11:08:27.912976] INFO: bigquant: input_features.v1 开始运行..
    [2019-02-19 11:08:27.916524] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.917199] INFO: bigquant: input_features.v1 运行完成[0.004221s].
    [2019-02-19 11:08:27.919304] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
    [2019-02-19 11:08:27.922833] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.923680] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.004374s].
    [2019-02-19 11:08:27.928876] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:27.933142] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.933911] INFO: bigquant: general_feature_extractor.v7 运行完成[0.005049s].
    [2019-02-19 11:08:27.938759] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:27.943146] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.944090] INFO: bigquant: general_feature_extractor.v7 运行完成[0.005329s].
    [2019-02-19 11:08:27.946307] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:27.953112] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.954242] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.00793s].
    [2019-02-19 11:08:27.957330] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:27.963707] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.964708] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.007379s].
    [2019-02-19 11:08:27.966879] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:27.972305] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.973072] INFO: bigquant: dropnan.v1 运行完成[0.006188s].
    [2019-02-19 11:08:27.975261] INFO: bigquant: join.v3 开始运行..
    [2019-02-19 11:08:27.981083] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.981894] INFO: bigquant: join.v3 运行完成[0.006632s].
    [2019-02-19 11:08:27.983739] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:27.987948] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.988690] INFO: bigquant: dropnan.v1 运行完成[0.004949s].
    [2019-02-19 11:08:27.990809] INFO: bigquant: stock_ranker_train.v5 开始运行..
    [2019-02-19 11:08:27.997289] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:27.998457] INFO: bigquant: stock_ranker_train.v5 运行完成[0.007651s].
    [2019-02-19 11:08:28.001414] INFO: bigquant: stock_ranker_predict.v5 开始运行..
    [2019-02-19 11:08:28.010573] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.011808] INFO: bigquant: stock_ranker_predict.v5 运行完成[0.010357s].
    [2019-02-19 11:08:28.015149] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:28.020095] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.021279] INFO: bigquant: instruments.v2 运行完成[0.006123s].
    [2019-02-19 11:08:28.023744] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:28.027979] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.028914] INFO: bigquant: instruments.v2 运行完成[0.005178s].
    [2019-02-19 11:08:28.030665] INFO: bigquant: input_features.v1 开始运行..
    [2019-02-19 11:08:28.034051] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.035087] INFO: bigquant: input_features.v1 运行完成[0.004378s].
    [2019-02-19 11:08:28.037212] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
    [2019-02-19 11:08:28.042168] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.043247] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.006017s].
    [2019-02-19 11:08:28.050533] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:28.055671] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.057227] INFO: bigquant: general_feature_extractor.v7 运行完成[0.006698s].
    [2019-02-19 11:08:28.067248] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:28.073152] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.074593] INFO: bigquant: general_feature_extractor.v7 运行完成[0.007364s].
    [2019-02-19 11:08:28.076939] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:28.081281] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.086497] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.009474s].
    [2019-02-19 11:08:28.089447] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:28.094081] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.095226] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.005778s].
    [2019-02-19 11:08:28.097181] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:28.101350] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.102407] INFO: bigquant: dropnan.v1 运行完成[0.005211s].
    [2019-02-19 11:08:28.104734] INFO: bigquant: join.v3 开始运行..
    [2019-02-19 11:08:28.110246] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.111099] INFO: bigquant: join.v3 运行完成[0.006318s].
    [2019-02-19 11:08:28.112948] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:28.116946] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.117656] INFO: bigquant: dropnan.v1 运行完成[0.00471s].
    [2019-02-19 11:08:28.119869] INFO: bigquant: stock_ranker_train.v5 开始运行..
    [2019-02-19 11:08:28.126568] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.127533] INFO: bigquant: stock_ranker_train.v5 运行完成[0.007663s].
    [2019-02-19 11:08:28.129686] INFO: bigquant: stock_ranker_predict.v5 开始运行..
    [2019-02-19 11:08:28.137979] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.139202] INFO: bigquant: stock_ranker_predict.v5 运行完成[0.0095s].
    [2019-02-19 11:08:28.142990] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:28.147923] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.151112] INFO: bigquant: instruments.v2 运行完成[0.008051s].
    [2019-02-19 11:08:28.153251] INFO: bigquant: instruments.v2 开始运行..
    [2019-02-19 11:08:28.163281] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.164517] INFO: bigquant: instruments.v2 运行完成[0.011259s].
    [2019-02-19 11:08:28.167290] INFO: bigquant: input_features.v1 开始运行..
    [2019-02-19 11:08:28.171944] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.172874] INFO: bigquant: input_features.v1 运行完成[0.005601s].
    [2019-02-19 11:08:28.175194] INFO: bigquant: advanced_auto_labeler.v2 开始运行..
    [2019-02-19 11:08:28.179996] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.181023] INFO: bigquant: advanced_auto_labeler.v2 运行完成[0.005811s].
    [2019-02-19 11:08:28.185752] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:28.190082] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.190868] INFO: bigquant: general_feature_extractor.v7 运行完成[0.005123s].
    [2019-02-19 11:08:28.196216] INFO: bigquant: general_feature_extractor.v7 开始运行..
    [2019-02-19 11:08:28.203642] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.204504] INFO: bigquant: general_feature_extractor.v7 运行完成[0.008286s].
    [2019-02-19 11:08:28.206731] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:28.211139] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.212078] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.005336s].
    [2019-02-19 11:08:28.213905] INFO: bigquant: derived_feature_extractor.v3 开始运行..
    [2019-02-19 11:08:28.218123] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.218952] INFO: bigquant: derived_feature_extractor.v3 运行完成[0.005041s].
    [2019-02-19 11:08:28.220793] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:28.224543] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.225794] INFO: bigquant: dropnan.v1 运行完成[0.005004s].
    [2019-02-19 11:08:28.227627] INFO: bigquant: join.v3 开始运行..
    [2019-02-19 11:08:28.231926] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.232888] INFO: bigquant: join.v3 运行完成[0.005254s].
    [2019-02-19 11:08:28.234780] INFO: bigquant: dropnan.v1 开始运行..
    [2019-02-19 11:08:28.239073] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.239741] INFO: bigquant: dropnan.v1 运行完成[0.004968s].
    [2019-02-19 11:08:28.241544] INFO: bigquant: stock_ranker_train.v5 开始运行..
    [2019-02-19 11:08:28.249159] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.250419] INFO: bigquant: stock_ranker_train.v5 运行完成[0.008863s].
    [2019-02-19 11:08:28.252676] INFO: bigquant: stock_ranker_predict.v5 开始运行..
    [2019-02-19 11:08:28.270253] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.271713] INFO: bigquant: stock_ranker_predict.v5 运行完成[0.019014s].
    [2019-02-19 11:08:28.286754] INFO: bigquant: cached.v3 开始运行..
    [2019-02-19 11:08:28.294345] INFO: bigquant: 命中缓存
    [2019-02-19 11:08:28.295232] INFO: bigquant: cached.v3 运行完成[0.008494s].
    [2019-02-19 11:08:28.313844] INFO: bigquant: backtest.v8 开始运行..
    [2019-02-19 11:08:28.318067] INFO: bigquant: 命中缓存
    
    • 收益率340.46%
    • 年化收益率35.53%
    • 基准收益率50.4%
    • 阿尔法0.25
    • 贝塔0.82
    • 夏普比率1.05
    • 胜率0.56
    • 盈亏比0.89
    • 收益波动率30.65%
    • 信息比率0.06
    • 最大回撤55.65%
    [2019-02-19 11:08:31.274685] INFO: bigquant: backtest.v8 运行完成[2.960815s].