xgboost

XGBoost(Extreme Gradient Boosting)是一种在金融领域广泛应用的机器学习算法。它通过梯度提升技术构建高效、准确的预测模型,特别适用于处理大规模数据集和复杂非线性关系。在金融风控、信贷审批、股票市场预测等场景中,XGBoost能有效挖掘数据特征,帮助金融机构优化决策,提高风险控制能力,从而实现更加精准和智能的金融服务。

XGboost回归模型核心原理介绍

XGBoost(eXtreme Gradient Boosting)是一个高效的机器学习库,也是一种基于梯度提升决策树(Gradient Boosting Decision Tree)的集成学习算法,专为提升树算法的性能和速度而设计。它实现了梯度提升框架,并支持回归、分类及排序的问题。XGBoost通过优化计算资源使用和提供高度可配置的参数,成为数据科学竞赛和实际应用中的热门选择。

核心概念

XG

更新时间:2024-02-02 10:22

华泰研报:XGboost实现有序回归

策略源码:

{{membership}}

https://bigquant.com/codeshare/a290e569-7680-45d7-86be-f6c81c18a1e6

\

更新时间:2023-12-11 06:46

文章回测报错:华泰研报:在XGboost中实现关于有序回归作为损失函数和评价函数

https://bigquant.com/college/courses/course-v1:public+2023110601+110601/courseware/7708009442174480802b3dd339f4ede0/45dafc16ea744216af376a7dc2961fa5/

老师您好,

我学习上面的视频文章,想试运行代码,但运行不下去,没办法回测,是我哪里没有配置对吗?谢谢老师!

  • \

    
    
    # 我们取前0.6的数据量作为训练集
    date = data['date'].unique

更新时间:2023-12-08 08:18

DeepAlpha短周期因子系列研究之:XGBoost 在量化选股中的应用

一、引言

DeepAlpha系列报告旨在从基础量价数据中,借鉴深度学习模型,应用于量化投资领域。学习模型包括:全连接深度网络(DNN)、卷积神经网络(CNN)、长短期记忆网络(LSTM)、对抗生成网络(GAN)、ResNet、TabNet,同时报告将引入自然语义识别NLP领域近年热门算法如BERT、Transformer、GPT、XLNet等,尝试构建各类DeepAlpha模型。

本篇文章通过借鉴传统机器学习算法——XGBoost——对相同的量价因子进行实验,方便与深度学习模型进行对比实践。

二、算法介绍

XGBoost 是在 Gradient Boosting(梯度提升)框架

更新时间:2023-12-07 06:50

XGBoost的价值选股策略

文献回顾

回顾价值策略

价值策略通俗地讲就是买入便宜股票,卖出昂贵股票,思想非常简单和直观。但是实际操作上这非常困难,因为我们没办法直接观察股票的真实价值。投资者可以从不同的视角采用不同的指标来估计股票内在价值。在股票市场中,最传统的方法就是通过会计报表的各个条目得到企业估值,我们可以从资产负债表得到市净率,从利润表得到资产收益率,从现金流量表得到现金流比率。Ma和Smith(2014)在《Sorting through the trash》中提到通过市净率、预测下期资产收益率和股价/现金流这三个指标合成一个综合的“价值”因子,可以显著提升策略表现(MA采取了三个因子Z得

更新时间:2023-11-26 16:58

基于XGBoost模型的智能选股策略

导语

上篇报告介绍了集成学习里Bagging方法的代表算法随机森林,本文将着眼于另一种集成学习方法:Boosting,并深入介绍Boosting里的“王牌” XGBoost 模型。最后,以一个实例介绍XGBoost模型在智能选股方面的应用。


Boosting V.S. Bagging

作为集成学习的两大分支,Boosting和Bagging都秉持着“三个臭皮匠顶个诸葛亮”的想法,致力于将单个弱学习器组合成为一个强学习器。他们的不同主要在组合方式上:

Bagging如上篇报告介绍的,采用bootstrap随机抽样从整体数据集中得到很多个小数据集(小

更新时间:2023-11-26 16:58

如何基于平台的xgboost,自定义目标函数呢?

自己通过import xgboost可以实现自定义目标函数,但是和平台的xgboost模块相比,自己的import xgboost比平台的xgboost模块慢了很多,时间花费几乎是30倍差距。

那么,如何基于平台的xgboost,实现自定义目标函数的定义呢?


\

更新时间:2023-10-09 07:41

在aistudio种,改变平台提供的xgboost参数,回测结果一点都不变,为何?


在aistudio种,用平台的提供xgboost方法回测,参数改了无数次,回测结果的走势图一模一样,没有变化,xgboost的缓存参数也是关闭的,m_cached=False。


平台提供的xgboost算法参数设置{w:100}


![虽然改变了不同的xgboost参数,但是回测结果一直是如图所示,一个小数点都不变{w:100}](/wiki/api/attachments.redirect?id=1295616f-94b0-4

更新时间:2023-10-09 07:32

XGBoost分类模型如何评价

缺少pred_lable,怎么样能把这个加上??

https://bigquant.com/experimentshare/33b77199cc314cdba3fde44c917e60b3

\

更新时间:2023-10-09 07:03

请问stockranker相比于普通的gbdt框架回归优势在哪里

本次我测试了三个gbdt开源框架xgboost, lightgbm, catboost 参数保持一致,分别用框架中的回归器对5日收益进行回归,对14-19年进行滚动训练,用两年的数据预测一年,回测的时候买预测值靠前的4个票持有5天,因子和其他参数都用AI可视化默认模版,去除ST股票。

{w:100}

![{w:100}](/wiki/api/attachments.redirect?id=1c39b870-470a-4001-90b7-

更新时间:2023-10-09 06:39

根据如何实现XGBOOST的pairwise目标函数及metricd策略原码报错如何解决

根据如何实现XGBOOST的pairwise目标函数及metricd策略原码,https://bigquant.com/wiki/doc/mubiao-hanshu-metric-ANiNxUfmFa

,报错如何解决:


BQInputRejected Traceback (most recent call last) BQInputRejected: 编译错误,34: 抱歉,平台暂时不支持此模块:typing.Tuple

[https://bigquant.com/experimentshare/04cf24c01e17

更新时间:2023-10-09 06:21

因子中含有特殊字符?

stock_ranker 模型会报错, xgboost不会

更新时间:2023-10-09 02:26

XGBoost模型增量训练

什么是模型增量训练


模型增量训练是在原有模型的基础上利用新的数据集对模型进行再次训练. 举个很简单的例子, 人从出生开始会被教导认识这个世界的事物, 并且每次认识事物都是基于已有认知的基础上去学习新的知识. 人的成长过程就是增量更新的过程.

当我们使用传统的机器学习方法建立量化投资模型时,通常需要使用历史数据进行训练,并使用该模型对新数据进行预测。然而,如果市场发生了变化,我们需要重新训练整个模型,以保持其预测能力。这个过程可能非常耗时,并且无法及时捕捉到市场的变化。

相比之下,增量更新是一种更加高效和实用的机器学习模型更新方式。它可以仅仅使用新的数据来更新模型,而不需要重新训练

更新时间:2023-06-25 07:30

XGBoost增量更新

什么是增量训练

增量更新的应用场景

\

更新时间:2023-06-25 02:01

XGBoost增量更新

更新时间:2023-06-25 01:50

使用BigQuant平台复现XGBoost算法

XGBoost算法的概念

树模型

机器学习模型可以简单分为传统机器学习模型和深度学习模型,传统的机器学习又可以根据模型的表达式分为树模型和线性模型。

Boosting模型

树模型以决策树为基础,在之上衍生出了各种算法,从集成学习的角度考虑,树模型可以分为 Bagging 和 Boosting 模型,Boosting 方法是另一种通过弱学习器提高准确度的方法,和 Bagging 方法不同的是,Boosting 每次根据之前模型的表现,进行新的模型的训练,以改变训练数据的权值和弱分类器的组合方式,得到最后的强学习器。

GBDT

对于

更新时间:2023-06-14 06:11

再看Boosting和GBM

这几天重新梳理了一边GBM,看了很多篇经典论文,又看了xgboost相关的东西,总结分享一下,更好的观看体验点击这里。

![](data:image/svg+xml;utf8,<svg%20xmln

更新时间:2023-06-14 03:02

xgboost策略,内核一直莫名的自动重启

问题

运行资源充足,但总是自动重启,100%复现


https://bigquant.com/experimentshare/721a8a757c1941e3b06b628c35279ce3

解答

可能是训练集数据存在异常值导致的,对数据进行预处理,可以参考以下策略

\

策略

[https://bigquant.com/experimentshare/596e737dfe9b423095685612871eed

更新时间:2023-06-01 02:13

xgboost的模型如何保存和读取?

问题

问题描述

xgboost的模型如何保存和读取?

问题代码

m5 = M.xgboost.v1(
training_ds=mSR3data,
features=mSR5.data,
predict_ds=mSR4data,
num_boost_round=NUMROUND,
objective='排序(pairwise)',#其他如map,ndcg
booster='gbtree',
max_depth=MAXDEPTH,
key_cols='date,instrument',
group_col='date',
other_train_paramet

更新时间:2023-06-01 02:13

XGBOOST策略,买入股票问题

所有条件不变的情况下,回测买入股票有问题,回测到1月20日,输出日志内1月21日买入的股票跟回测到21日,回测中实际买入的股票不符,什么原因?

更新时间:2023-06-01 02:13

如何固化xgboost模型并调用|模型固化

本文主要讲究如何使用xgboost模型开发AI策略的过程中的相关技术。

保存模型的好处:

  1. 模型固化,每次模型的预测结果一致,便于复现
  2. 不用每次训练模型,节省时间
  3. 可以进行策略模型交流,但又不透露模型细节


https://bigquant.com/experimentshare/4b5549b76d3e425dbf49499eb854cae2

最后是调用模型

我们将模型以csv文件保存在自己的研发环

更新时间:2023-02-20 02:13

xgboost和随机森林为什么没有loss和mse

问题

也没有模型训练过程,直接就1分钟不到就直接输出 预测结果了


\

解答

①数据量太少

②xgboost建议使用这个模块: {w:100}

随机森林建议使用这个模块:

{w:100}

更新时间:2022-12-20 14:20

xgboost报错:ValueError: Feature importance is not defined for Booster type gblinear

问题

麻烦大佬看看下面报错该如何解决:

{w:100}解答

需要看一下传到m12的数据是怎样的才能判断具体的错误,方便的话把代码分享给小Q。

更新时间:2022-12-20 14:20

如何用catboost替换stockranker算法

问题

请教catboost的详细使用方法,对于原先使用xgboost或者stockranker的策略,如何用catboost替换掉xgboost或者stockranker?

视频

https://www.bilibili.com/video/BV1US4y1n79r/?spm_id_from=333.999.0.0

策略源码

[https://bigquant.com/experimentshare/c2422c6678a8

更新时间:2022-11-30 09:10

xgboost回测出错

问题

KeyError Traceback (most recent call last)
in
209 )
210
–> 211 m19 = M.trade.v4(
212 instruments=m9.data,
213 options_data=m21.predictions,
in m19_handle_data_bigquant_run(context, data)
25 context.ranker_prediction.date == data.current_dt.strftime(’%Y-%m-%d’)]
26 print (ranker_pre

更新时间:2022-11-09 01:23

分页第1页第2页