{"description":"实验创建于2020/4/11","graph":{"edges":[{"to_node_id":"-526:instruments","from_node_id":"-513:data"},{"to_node_id":"-565:instruments","from_node_id":"-513:data"},{"to_node_id":"-526:features","from_node_id":"-521:data"},{"to_node_id":"-541:features","from_node_id":"-521:data"},{"to_node_id":"-548:features","from_node_id":"-521:data"},{"to_node_id":"-557:features","from_node_id":"-521:data"},{"to_node_id":"-3283:features","from_node_id":"-521:data"},{"to_node_id":"-548:input_data","from_node_id":"-526:data"},{"to_node_id":"-541:instruments","from_node_id":"-532:data"},{"to_node_id":"-614:instruments","from_node_id":"-532:data"},{"to_node_id":"-4989:instruments","from_node_id":"-532:data"},{"to_node_id":"-557:input_data","from_node_id":"-541:data"},{"to_node_id":"-576:data2","from_node_id":"-548:data"},{"to_node_id":"-898:input_data","from_node_id":"-557:data"},{"to_node_id":"-576:data1","from_node_id":"-565:data"},{"to_node_id":"-590:input_data","from_node_id":"-576:data"},{"to_node_id":"-3283:training_ds","from_node_id":"-590:data"},{"to_node_id":"-3283:predict_ds","from_node_id":"-898:data"},{"to_node_id":"-5003:input_2","from_node_id":"-4989:data"},{"to_node_id":"-4628:predictions","from_node_id":"-5003:data_1"},{"to_node_id":"-635:input_ds","from_node_id":"-3283:predictions"},{"to_node_id":"-614:options_data","from_node_id":"-3283:predictions"},{"to_node_id":"-5003:input_1","from_node_id":"-3283:predictions"}],"nodes":[{"node_id":"-513","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2014-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-513"}],"output_ports":[{"name":"data","node_id":"-513"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-521","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-521"}],"output_ports":[{"name":"data","node_id":"-521"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-526","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-526"},{"name":"features","node_id":"-526"}],"output_ports":[{"name":"data","node_id":"-526"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-532","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-532"}],"output_ports":[{"name":"data","node_id":"-532"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-541","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-541"},{"name":"features","node_id":"-541"}],"output_ports":[{"name":"data","node_id":"-541"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-548","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-548"},{"name":"features","node_id":"-548"}],"output_ports":[{"name":"data","node_id":"-548"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-557","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-557"},{"name":"features","node_id":"-557"}],"output_ports":[{"name":"data","node_id":"-557"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-565","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -5) / shift(open, -1)>1,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-565"}],"output_ports":[{"name":"data","node_id":"-565"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-576","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-576"},{"name":"data2","node_id":"-576"}],"output_ports":[{"name":"data","node_id":"-576"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-590","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-590"}],"output_ports":[{"name":"data","node_id":"-590"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-614","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-614"},{"name":"options_data","node_id":"-614"},{"name":"history_ds","node_id":"-614"},{"name":"benchmark_ds","node_id":"-614"},{"name":"trading_calendar","node_id":"-614"}],"output_ports":[{"name":"raw_perf","node_id":"-614"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-635","module_id":"BigQuantSpace.sort.sort-v4","parameters":[{"name":"sort_by","value":"pred_label","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-635"},{"name":"sort_by_ds","node_id":"-635"}],"output_ports":[{"name":"sorted_data","node_id":"-635"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-898","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-898"}],"output_ports":[{"name":"data","node_id":"-898"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-4628","module_id":"BigQuantSpace.metrics_classification.metrics_classification-v1","parameters":[],"input_ports":[{"name":"predictions","node_id":"-4628"}],"output_ports":[{"name":"data","node_id":"-4628"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-4989","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -5) / shift(open, -1)>1,1,0)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\n#all_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-4989"}],"output_ports":[{"name":"data","node_id":"-4989"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-5003","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df_value = pd.merge(left=input_1.read(),right=input_2.read(),on=['date','instrument'],how='inner')\n return Outputs(data_1=DataSource.write_df(df_value))\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-5003"},{"name":"input_2","node_id":"-5003"},{"name":"input_3","node_id":"-5003"}],"output_ports":[{"name":"data_1","node_id":"-5003"},{"name":"data_2","node_id":"-5003"},{"name":"data_3","node_id":"-5003"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-3283","module_id":"BigQuantSpace.xgboost.xgboost-v1","parameters":[{"name":"num_boost_round","value":"10","type":"Literal","bound_global_parameter":null},{"name":"objective","value":"二分类(逻辑回归)","type":"Literal","bound_global_parameter":null},{"name":"booster","value":"gbtree","type":"Literal","bound_global_parameter":null},{"name":"max_depth","value":6,"type":"Literal","bound_global_parameter":null},{"name":"key_cols","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"group_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"nthread","value":1,"type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":-1,"type":"Literal","bound_global_parameter":null},{"name":"other_train_parameters","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-3283"},{"name":"features","node_id":"-3283"},{"name":"model","node_id":"-3283"},{"name":"predict_ds","node_id":"-3283"}],"output_ports":[{"name":"output_model","node_id":"-3283"},{"name":"predictions","node_id":"-3283"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-513' Position='10,23,200,200'/><node_position Node='-521' Position='335,26,200,200'/><node_position Node='-526' Position='131,157,200,200'/><node_position Node='-532' Position='591,-80,200,200'/><node_position Node='-541' Position='551,173,200,200'/><node_position Node='-548' Position='134,243,200,200'/><node_position Node='-557' Position='581,264,200,200'/><node_position Node='-565' Position='-160,159,200,200'/><node_position Node='-576' Position='-5,330,200,200'/><node_position Node='-590' Position='2,408,200,200'/><node_position Node='-614' Position='176,780,200,200'/><node_position Node='-635' Position='400.7861328125,677.2079467773438,200,200'/><node_position Node='-898' Position='578,359,200,200'/><node_position Node='-4628' Position='708,865,200,200'/><node_position Node='-4989' Position='884.3961181640625,306.74652099609375,200,200'/><node_position Node='-5003' Position='664,712,200,200'/><node_position Node='-3283' Position='273.5406036376953,533.766357421875,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-05-09 22:29:21.376297] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-05-09 22:29:21.381946] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.383241] INFO: moduleinvoker: instruments.v2 运行完成[0.006948s].
[2023-05-09 22:29:21.390908] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-05-09 22:29:21.396949] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.398244] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.007336s].
[2023-05-09 22:29:21.401841] INFO: moduleinvoker: input_features.v1 开始运行..
[2023-05-09 22:29:21.407046] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.408366] INFO: moduleinvoker: input_features.v1 运行完成[0.006529s].
[2023-05-09 22:29:21.419372] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-05-09 22:29:21.434514] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.435952] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.016583s].
[2023-05-09 22:29:21.442546] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-05-09 22:29:21.447491] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.448746] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.006199s].
[2023-05-09 22:29:21.455942] INFO: moduleinvoker: join.v3 开始运行..
[2023-05-09 22:29:21.461316] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.463122] INFO: moduleinvoker: join.v3 运行完成[0.007171s].
[2023-05-09 22:29:21.476800] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-05-09 22:29:21.486659] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.488582] INFO: moduleinvoker: dropnan.v1 运行完成[0.011775s].
[2023-05-09 22:29:21.493797] INFO: moduleinvoker: instruments.v2 开始运行..
[2023-05-09 22:29:21.503223] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.504678] INFO: moduleinvoker: instruments.v2 运行完成[0.01089s].
[2023-05-09 22:29:21.517724] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2023-05-09 22:29:21.523686] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.525139] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007439s].
[2023-05-09 22:29:21.532175] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2023-05-09 22:29:21.537973] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.539314] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007154s].
[2023-05-09 22:29:21.546573] INFO: moduleinvoker: dropnan.v1 开始运行..
[2023-05-09 22:29:21.552046] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.553573] INFO: moduleinvoker: dropnan.v1 运行完成[0.006994s].
[2023-05-09 22:29:21.561084] INFO: moduleinvoker: xgboost.v1 开始运行..
[2023-05-09 22:29:21.568081] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.569569] INFO: moduleinvoker: xgboost.v1 运行完成[0.008484s].
[2023-05-09 22:29:21.577326] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2023-05-09 22:29:21.585308] INFO: moduleinvoker: 命中缓存
[2023-05-09 22:29:21.587003] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.009686s].
[2023-05-09 22:29:21.598873] INFO: moduleinvoker: cached.v3 开始运行..
[2023-05-09 22:29:30.423172] INFO: moduleinvoker: cached.v3 运行完成[8.824298s].
[2023-05-09 22:29:30.431596] INFO: moduleinvoker: metrics_classification.v1 开始运行..
[2023-05-09 22:29:39.184984] ERROR: moduleinvoker: module name: metrics_classification, module version: v1, trackeback: ValueError: model中无pred_label,无法评估模型
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-12-4fed58689c84> in <module>
183 )
184
--> 185 m12 = M.metrics_classification.v1(
186 predictions=m16.data_1
187 )
ValueError: model中无pred_label,无法评估模型