风险评估

从金融角度看,风险评估是决策的基石。它通过深入分析潜在的不利因素和可能发生的不良后果,帮助投资者、企业和金融机构量化和管理风险。在复杂多变的金融市场中,风险评估能够识别资产、负债及市场变动的潜在威胁,并提供对冲这些威胁的方法或采取有效缓释的策略。借助先进的风险模型和工具,可以更精准地评估各种风险,如信用风险、市场风险、操作风险等,并为投资者提供清晰的风险收益视图,以支持其作出更加明智的投资决策。在当今金融全球化的背景下,准确、及时的风险评估不仅能够提高个体的风险抵御能力,还能为整个金融系统的稳定做出贡献。

HeatMap - 热力图

接口

对于HeatMap(热力图)的 _type=”heatmap” 和 series_options:

bigcharts.Chart(
    ... 其他参数
    # 【设置图表类型】图表类型,具体参考各类型图表
    type_ = "heatmap",
    
    # 热力图中y传入的数据轴必须是两项,第一项表示的是y轴坐标轴的刻度数据第二项表示的

更新时间:2024-04-25 07:38

市场数据服务提供商有哪些?金融数据推荐

金融市场数据对于投资者来说具有重要的参考意义,金融数据、市场数据可以帮助他们更好地理解外汇,股票、贵金属、加密货币等市场数据、金融数据、评估风险、制定投资策略,从而更好地进行金融投资,其中可以通过数据API获取实时金融数据是主流方式,数据API主要体现在以下几个方面:

走势分析:通过分析黄金和贵金属的历史数据,可以了解它们在过去的价格走势和波动情况。这有助于投资者对未来市场走势有所了解,帮助他们做出更明智的投资决策。

风险评估:历史数据可以帮助投资者评估持有黄金和贵金属的风险水平。通过分析历史波动幅度、涨跌趋势,可以帮助投资者制定风险管理策略,减少投资风险。

参考指标:黄金和贵金属的历史

更新时间:2024-04-16 16:52

黄金期货贵金属-近一年的历史数据下载方法推荐

黄金和贵金属的历史数据对于投资者来说具有重要的参考意义,可以帮助他们更好地理解市场、评估风险、制定投资策略,从而更好地进行金融投资,主要体现在以下几个方面

  1. 走势分析:通过分析黄金和贵金属的历史数据,可以了解它们在过去的价格走势和波动情况。这有助于投资者对未来市场走势有所了解,帮助他们做出更明智的投资决策。
  2. 风险评估:历史数据可以帮助投资者评估持有黄金和贵金属的风险水平。通过分析历史波动幅度、涨跌趋势,可以帮助投资者制定风险管理策略,减少投资风险。
  3. 参考指标:黄金和贵金属的历史数据常常被用作金融市场的参考指标。投资者和分析师可以通过历史数据来研究金融市场的整体走势和规律,以

更新时间:2024-03-20 02:04

资产定价模型有哪些

资产定价模型(Asset Pricing Models)是金融学中用于评估或预测金融资产价值的理论和模型。这些模型基于不同的假设,用于不同类型的资产,包括股票、债券、衍生品等,通过量化资产的预期收益与其所承担的风险之间的关系,帮助投资者评估投资机会并做出明智的投资决策。

资产定价模型概念图

以下是一些重要的资产定价模型:

  1. **资本资产定价模型(Capital Asset Pricing Model, CAP

更新时间:2024-02-28 09:10

AI量化选股模型有哪些方法

基本概念

量化选股模型是在量化投资领域中广泛使用的工具,旨在系统地识别和选择具有超额收益潜力的股票。这些模型通常基于历史数据和统计分析,结合了各种财务指标、市场数据、经济指标和其他相关信息。

\

常见6大选股模型

以下是一些主要和常用的量化选股模型:

  1. 基于因子的模型

    1. 多因子模型:结合多个因子(如价值、成长、动量、质量、规模等)来评估股票。

更新时间:2024-02-23 06:34

回测结果是什么意思及怎么解读

回测结果是基于历史数据对某一投资策略进行模拟交易后得到的结果。进行回测的目的是为了评估一个投资策略的盈利能力、风险水平以及其他相关指标。

回测结果中通常包括不同时间段的投资收益率、最大回撤、胜率等指标。这些结果可以帮助投资者了解该策略的优势和不足,从而进行调整和优化。

基本概念

回测结果通常包含多个方面的信息,主要包括:

  1. 总收益率:在策略回测期间,总收益率作为盈利或亏损的总体百

更新时间:2024-01-26 10:06

如何只选择中证1000成分股进行回测

如标题

更新时间:2024-01-09 06:13

什么是无监督学习(机器学习)

什么是无监督学习?

顾名思义,“无监督”学习发生在没有监督者或老师并且学习者自己学习的情况下。

例如,考虑一个第一次看到并品尝到苹果的孩子。她记录了水果的颜色、质地、味道和气味。下次她看到一个苹果时,她就知道这个苹果和之前的苹果是相似的物体,因为它们具有非常相似的特征。她知道这和橙子很不一样。但是,她仍然不知道它在人类语言中的名称是什么,即“苹果”,因为不知道这个标签。

这种不存在标签(在没有老师的情况下)但学习者仍然可以自己学习模式的学习称为无监督学习。

![img{w:100}](https://d1rwhvwstyk9gu.cloudfront.net/2021/

更新时间:2023-11-26 16:58

ranker_prediction 和 context.benckmark_risk.ix[today_date].values[0]。内嵌的逻辑是什么

问题

大家好,我看很多关于AI的策略里面都有以下两句代码 ranker_prediction 和 context.benckmark_risk.ix[today_date].values[0]。我想请问这个内嵌的逻辑是什么…

更新时间:2023-10-09 08:24

调用gplearn报错!

{w:100}

更新时间:2023-10-09 06:28

策略回测有交易,但模拟盘没有信号

{w:100}

更新时间:2023-10-09 06:18

财务数据的使用

更新时间:2023-10-09 02:41

ETF投资指南:如何分析比较ETF(专)

本文属于我们陆续发布的ETF投资指南系列研究文献,主要讲一下分析比较ETF可以用到的一些专业方法。这篇文章的专业性比较强,适合基金投资行业从业人员阅读。

在绝大部分投资者比较和分析ETF的时候,他们看的比较多的指标有:

![](data:image/svg+xml;utf8,<svg%20xmlns='[http://www.w3.org/2000/svg' width='736' height=

更新时间:2023-06-14 03:02

FCN(2)——CRF通俗非严谨的入门

前面我们简单介绍了FCN——这个将High-Level任务转到Low-Level任务的模型。这里的High和Low并不是我们通常意义中的High和Low,两种任务并没有高低之分,但是两种任务实际上需要的技术还是有所不同的。CNN模型从High-Level任务起家,直接将它们放到Low-Level的任务中还是有些“水土不服”,于是乎,大神们想出了用概率图模型来补充这些细粒度的任务。

由于在这个专栏中我们还没有介绍概率图模型的基本内容,这一篇我们简单介绍下概率图模型和CRF的基本概念,为后面的内容做铺垫。

无向图模型

想了解无向图模型,先要了解无向图的特点。无向图和有向图有什么区别呢?

更新时间:2023-06-14 03:02

机器学习前传

人工智能是最近很火热的话题,有的人似乎有幻觉,未来人类所有问题都可以交给电脑来处理。未来是否如此难以预知。但是在作出预测之前,我们有必要了解究竟什么是人工智能。

机器如何有人的智能呢?方法就是机器学习。机器学习不是一个新概念,很早之前就诞生了决策树、SVM、神经网络等方法。战胜了柯洁的AlphaGo和战胜了AlphaGo的AlphaZero都是神经网络算法中的深度学习。深度学习最早提出来之后,并没有对人工智能产生很显著的推进,因为它依赖于大量样本和大量计算。但随着互联网时代数据的大量产生、大量积累,深度学习重获新生。

神经网络不是万金油,它也只是解决某些问题的一种方法。什么时候我们需要它呢

更新时间:2023-06-14 03:02

机器学习论文笔记(三)value iteration Network--nips2017

论文笔记(三)NIPSI:value iteration Networks


arxiv:https://arxiv.org/pdf/1602.02867.pdfGitHub:[https://github.com/onlytailei/Value-Iteration-Networks-PyTorch](https://link.zhihu.com/?target=https%3A//github.com/onlytailei/Value-

更新时间:2023-06-14 03:02

互联网图像中的像素级语义识别

编者按:“天街小雨润如酥,草色遥看近却无。”

从韩愈的这两句诗可以看出,人对图像内容的语义理解,并不依赖于细粒度监督信息做辅助。

与之相比,在机器学习领域,现阶段的语义分割任务,则依赖于大量的精细标注数据。互联网,作为最为丰富的数据源,吸引着相关从业人员的目光,然而要想利用这些数据,则面临着巨大的标注压力。

因此,引发了两点思考:第一,能否结合关键词信息作辅助,从web中直接学习知识,而不需要精细的人工标注呢?第二,能否利用类别无关的线索,在标注少量类别的数据集上训练好后,将其泛化到其他所有类别物体呢?

本文中,来自南开大学的程明明教授,将从这两点展开介绍目前的研究进展。

更新时间:2023-06-14 03:02

TensorFlow系列



\

更新时间:2023-06-14 03:02

随机变量的概率分布

文章主要介绍随机变量的两类概率分布:离散概率分布和**连续概率分布。**从以下三个部分进行介绍:

  • 随机变量和概率分布相关概念和用途
  • 四种离散概率分布
  • 两种连续概率分布

一、随机变量和概率分布相关概念和用途

1、随机变量

  • 是一个量化随机事件的函数,它将随机事件每一个可能出现的试验结果赋予一个数字;
  • 分离散随机变量(数值间有间隔)和连续随机变量(有无数个结果);
  • 一般用 X 表示。

2、概率分布

  • 用统计图来表示随机变量所有结果和对应结果发生的概率;
  • 概率分布=随机变量+概率+分布

更新时间:2023-06-14 03:02

支持向量机

在本文中,我将介绍机器学习中关于传统机器学习中几乎最为强大的方法——支持向量机。

因为知乎中对于markdown的支持太差了,本文不在知乎直接排版,所以阅读体验不是很好,若想获得更好的阅读体验,请点击下文链接进行阅读。

[支持向量机​chrer.com 图标](https://link.zhihu.com/?target=http%3A//chrer.com/2018/08/04/%25E6%259

更新时间:2023-06-14 03:02

深度学习系列


\

更新时间:2023-06-14 03:02

NLP系列



\

更新时间:2023-06-14 03:02

如何评价投资组合的绩效指标

绩效和风险指标被广泛用于评估股票或投资组合的绩效,是投资组合管理的主要组成部分。在这篇文章中,我们将尝试触及一些重要的投资组合和风险指标,这些指标可以让您清楚地了解您的投资业绩和风险。

本文的第一部分着眼于这些常用的性能指标,这些指标使我们能够深入了解交易策略的结构。在本文的第二部分,我们将介绍投资或投资组合中风险管理的一些重要指标。最后一部分通过一个简单的示例简要说明了您的投资组合的策略优化。


为什么我们需要投资组合风险管理?

资产组合的表现是通过一组参数来衡量的。例如,如果您进行股票交易,那么您的回报将与基准指数进行比较。投资组合回报的一致性也被证明是一个重要因素。

更新时间:2023-06-14 03:02

银行业:光环不再?

2008年发生的金融危机,虽然已经过去了8年左右,但其造成的影响可能还会持续很长时间。而受这场金融危机影响最大的行业之一,就是处于危机爆发中心的银行业。

如果我们仔细研究美国一些大银行在2015年的市场估值,就会得到一个让人非常吃惊的结论:现在的股市对于这些大银行的风险评估,和08年金融危机时相比并没有多大改变。

![](data:image/svg+xml;utf8,<svg xmlns='<ht

更新时间:2023-06-14 03:02

股票和债券的相关性

简介

投资者依靠股票-债券的相关性来构建最优投资组合、设计对冲策略和评估风险。大多数投资者只是通过推断月度收益的历史相关性来估计股票与债券的长期相关性,但这种方法显然是不可靠的。作者为产生可靠的股票-债券相关性的预测引入了四项创新。首先,本文引入单期相关的概念,以解决股票和债券收益的自相关和滞后交叉相关不为零以及长期相关性随时间变化的问题。第二,确定了股票-债券相关性的基本预测因子。第三,将股票和债券相关性建模为一些基本预测因子路径的函数,而不是单一观测值的函数。最后,对样本进行审查,进行部分样本回归。结果显示,股票-债券相关性预测的可靠性得到显著提高。

全文

[/wiki/

更新时间:2023-06-13 06:53

分页第1页第2页第3页