{"description":"实验创建于2021/11/17","graph":{"edges":[{"to_node_id":"-243:instruments","from_node_id":"-213:data"},{"to_node_id":"-255:instruments","from_node_id":"-213:data"},{"to_node_id":"-243:features","from_node_id":"-229:data"},{"to_node_id":"-234:features","from_node_id":"-229:data"},{"to_node_id":"-281:features","from_node_id":"-229:data"},{"to_node_id":"-288:features","from_node_id":"-229:data"},{"to_node_id":"-374:features","from_node_id":"-229:data"},{"to_node_id":"-266:data2","from_node_id":"-234:data"},{"to_node_id":"-234:input_data","from_node_id":"-243:data"},{"to_node_id":"-266:data1","from_node_id":"-255:data"},{"to_node_id":"-374:training_ds","from_node_id":"-266:data"},{"to_node_id":"-281:instruments","from_node_id":"-272:data"},{"to_node_id":"-288:input_data","from_node_id":"-281:data"}],"nodes":[{"node_id":"-213","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2016-11-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-213"}],"output_ports":[{"name":"data","node_id":"-213"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-229","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_10\nreturn_20\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-229"}],"output_ports":[{"name":"data","node_id":"-229"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-234","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-234"},{"name":"features","node_id":"-234"}],"output_ports":[{"name":"data","node_id":"-234"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-255","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-255"}],"output_ports":[{"name":"data","node_id":"-255"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-266","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-266"},{"name":"data2","node_id":"-266"}],"output_ports":[{"name":"data","node_id":"-266"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-272","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-1-1","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-1-1","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-272"}],"output_ports":[{"name":"data","node_id":"-272"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-281","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-281"},{"name":"features","node_id":"-281"}],"output_ports":[{"name":"data","node_id":"-281"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-374","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":20,"type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.2","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"False","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-374"},{"name":"features","node_id":"-374"},{"name":"test_ds","node_id":"-374"},{"name":"base_model","node_id":"-374"}],"output_ports":[{"name":"model","node_id":"-374"},{"name":"feature_gains","node_id":"-374"},{"name":"m_lazy_run","node_id":"-374"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-213' Position='83,22,200,200'/><node_position Node='-229' Position='457,-60,200,200'/><node_position Node='-234' Position='349,328,200,200'/><node_position Node='-243' Position='351,211,200,200'/><node_position Node='-255' Position='17,190,200,200'/><node_position Node='-266' Position='185,413,200,200'/><node_position Node='-272' Position='779,47,200,200'/><node_position Node='-281' Position='774,161,200,200'/><node_position Node='-288' Position='786,286,200,200'/><node_position Node='-374' Position='424,588,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-11-17 16:15:51.897444] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-11-17 16:15:51.913729] INFO: moduleinvoker: 命中缓存
[2021-11-17 16:15:51.916014] INFO: moduleinvoker: instruments.v2 运行完成[0.018585s].
[2021-11-17 16:15:51.925734] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-11-17 16:15:51.932281] INFO: moduleinvoker: 命中缓存
[2021-11-17 16:15:51.935312] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.009577s].
[2021-11-17 16:15:51.939795] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-11-17 16:15:51.953536] INFO: moduleinvoker: 命中缓存
[2021-11-17 16:15:51.955242] INFO: moduleinvoker: input_features.v1 运行完成[0.015448s].
[2021-11-17 16:15:51.977652] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-11-17 16:15:51.990887] INFO: moduleinvoker: 命中缓存
[2021-11-17 16:15:51.992747] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.015118s].
[2021-11-17 16:15:52.004581] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-11-17 16:15:52.016209] INFO: moduleinvoker: 命中缓存
[2021-11-17 16:15:52.017913] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.013337s].
[2021-11-17 16:15:52.026241] INFO: moduleinvoker: join.v3 开始运行..
[2021-11-17 16:15:52.034960] INFO: moduleinvoker: 命中缓存
[2021-11-17 16:15:52.036448] INFO: moduleinvoker: join.v3 运行完成[0.010214s].
[2021-11-17 16:15:52.043386] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2021-11-17 16:15:52.798917] INFO: StockRanker: 特征预处理 ..
[2021-11-17 16:15:53.141839] INFO: StockRanker: prepare data: training ..
[2021-11-17 16:15:53.472488] INFO: StockRanker: sort ..
[2021-11-17 16:16:05.170070] INFO: StockRanker训练: 94438364 准备训练: 1061532 行数
[2021-11-17 16:16:05.173442] INFO: StockRanker训练: AI模型训练,将在1061532*2=212.31万数据上对模型训练进行20轮迭代训练。预计将需要2~3分钟。请耐心等待。
[2021-11-17 16:16:05.432492] INFO: StockRanker训练: 正在训练 ..
[2021-11-17 16:16:05.486943] INFO: StockRanker训练: 任务状态: Pending
[2021-11-17 16:16:15.537045] INFO: StockRanker训练: 任务状态: Running
[2021-11-17 16:16:25.578965] INFO: StockRanker训练: 00:00:07.6283719, finished iteration 1
[2021-11-17 16:16:25.581623] INFO: StockRanker训练: 00:00:13.4475816, finished iteration 2
[2021-11-17 16:16:35.628222] INFO: StockRanker训练: 00:00:19.5122027, finished iteration 3
[2021-11-17 16:16:35.630005] INFO: StockRanker训练: 00:00:25.5236841, finished iteration 4
[2021-11-17 16:16:45.672748] INFO: StockRanker训练: 00:00:31.6182116, finished iteration 5
[2021-11-17 16:16:55.718562] INFO: StockRanker训练: 00:00:37.6119283, finished iteration 6
[2021-11-17 16:16:55.720679] INFO: StockRanker训练: 00:00:43.5979437, finished iteration 7
[2021-11-17 16:17:05.765571] INFO: StockRanker训练: 00:00:50.0941717, finished iteration 8
[2021-11-17 16:17:15.809699] INFO: StockRanker训练: 00:00:56.4418988, finished iteration 9
[2021-11-17 16:17:15.811185] INFO: StockRanker训练: 00:01:02.7481785, finished iteration 10
[2021-11-17 16:17:25.851231] INFO: StockRanker训练: 00:01:09.3340619, finished iteration 11
[2021-11-17 16:17:25.852684] INFO: StockRanker训练: 00:01:16.2056227, finished iteration 12
[2021-11-17 16:17:35.893999] INFO: StockRanker训练: 00:01:23.3547928, finished iteration 13
[2021-11-17 16:17:45.952858] INFO: StockRanker训练: 00:01:31.9324546, finished iteration 14
[2021-11-17 16:17:56.016442] INFO: StockRanker训练: 00:01:40.8726163, finished iteration 15
[2021-11-17 16:18:06.060247] INFO: StockRanker训练: 00:01:49.7084392, finished iteration 16
[2021-11-17 16:18:16.103883] INFO: StockRanker训练: 00:01:58.9294907, finished iteration 17
[2021-11-17 16:18:26.143333] INFO: StockRanker训练: 00:02:07.6416926, finished iteration 18
[2021-11-17 16:18:26.144871] INFO: StockRanker训练: 00:02:16.0459930, finished iteration 19
[2021-11-17 16:18:36.189881] INFO: StockRanker训练: 00:02:24.3951868, finished iteration 20
[2021-11-17 16:18:36.191772] INFO: StockRanker训练: 任务状态: Succeeded
[2021-11-17 16:18:36.298037] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[164.254641s].