过拟合

在金融领域,"过拟合"是一个重要概念,尤其在使用复杂模型和算法进行数据分析和预测时。过拟合主要指的是模型在训练数据上表现过于优越,以至于把训练数据中的噪声或特殊情况也考虑进去,从而使得模型在新的、未见过的数据上表现不佳。 更具体地说,当一个模型过度拟合训练数据时,它会将自身调整得过于复杂,以适应训练数据中的每一个细节。这导致模型对训练数据的预测非常准确,但对新数据的预测能力大大降低。在金融市场的应用中,这可能意味着模型在历史数据上表现良好,但在实际交易中却无法实现预期的回报。 过拟合的原因有很多,例如训练数据量不足、模型复杂度过高、训练时间过长等。为了防止过拟合,金融从业人员通常会采用一系列策略,如交叉验证、使用正则化方法、提前停止训练、增加训练数据量、降低模型复杂度等。这些方法的目标都是使模型能够在不见过的数据上保持稳健的预测性能,从而在实际金融决策中提供可靠的依据。

AI量化交易常识

分享一些量化交易相关的常识信息。

五因子模型公式及应用

五因子模型是哪五个因子

**[多因子选股模型及优缺点](https://bigquant.com/wiki/doc/5asa5zug5a2q6ycj6ikh5qih5z6l5zcn6kn6ke

更新时间:2024-02-19 06:56

Machine Learning is Fun! — 全世界最简单的机器学习入门指南

你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!

这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放弃,希望能有人给出一个更直观的解释。本文就是你们想要的东西。

本文的写作目标是让任何人都能看懂,这意味着文中有大量的概括。但是那又如何呢?只要能让读者对机器学习更感兴趣,这篇文章的任务也就完成了。

什么是机器学习?

机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Gene

更新时间:2024-01-26 07:22

三因子加工

{{membership}}


https://bigquant.com/codeshare/a04ad103-6217-4484-a57c-81cc1e64fdf6

\

更新时间:2024-01-12 07:02

如何只选择中证1000成分股进行回测

如标题

更新时间:2024-01-09 06:13

逻辑回归和交叉熵

策略源码:

{{membership}}

https://bigquant.com/codeshare/e9c1b98b-e596-4e90-941d-cdb93af92c2e

\

更新时间:2023-12-11 06:50

训练过程中报错,请问该怎么解决

https://bigquant.com/codeshare/10296b06-11cf-475f-80e7-81b7f0fbc5d5

\

更新时间:2023-11-27 06:17

关于DQN模型错误,为什么错,怎么操作,怎么构架一个优秀的深度强化模型

https://bigquant.com/codeshare/e91330dd-e6b5-40ca-ba6a-b76050db6c40

\

更新时间:2023-11-27 05:55

零基础《AI挑战虚拟股票预测大赛》入门教程

https://bigquant.com/experimentshare/57c7495eba374b90b4d5747154df41b8

\

更新时间:2023-11-26 16:58

关于线性回归、岭回归和Lasso回归的综合入门指南

https://bigquant.com/experimentshare/c451f287332a411cb4c7756c457318f6

\

更新时间:2023-11-26 16:58

机器学习中的过拟合

来源:elitedatascience编译:caoxiyang

导语

成千上万的数据科学新手会在不知不觉中犯下一个错误,你知道是什么吗?这个错误可以一手毁掉你的机器学习模型,这并不夸张。我们现在来讨论应用机器学习中最棘手的障碍之一:过拟合(overfitting)

在本文中,我们将详细介绍过拟合、如何在模型中识别过拟合,以及如何处理过拟合。 最后你会学会如何一劳永逸地处理这个棘手的问题。你将读到下面这些内容:

  1. 过拟合的例子
  2. 信号与噪音
  3. 拟合优度
  4. 过拟合和欠拟合
  5. 如何检查过拟合
  6. 如何避免过拟合

过拟合的例子

假设我们想根据

更新时间:2023-11-26 16:58

监督式机器学习算法的应用:择时

导语

《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在本文文末克隆策略源代码,进行深入和扩展研究。

《监督式机器学习算法的应用》

Ali El-Shayeb通过价格和成交量相关的9个特征训练模型,特征列表和数据来源见下图。

![](/community/uploads/default/origin

更新时间:2023-11-26 16:58

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2023-11-26 16:58

“StockRanker训练”模块使用以前训练保存的模型作为”基础模型“继续训练报错

https://bigquant.com/experimentshare/e2289bba09a64d1cb84d9412e72ae393

\

更新时间:2023-10-09 08:21

请问如何搭建简单的resnet

问题

请问如何搭建简单的resnet

就给我展示最小单元好了

更新时间:2023-10-09 08:20

DNN模型训练次数越多,效果越差?

DNN模型进行训练

Epoch设为1000,训练得出的效果反而比设为5更差,是什么原因?如何选择训练后的最好模型进行保存?谢谢!

更新时间:2023-10-09 08:03

请问StockRanker如何正则化 防止过拟合

问题

请问StockRanker如何正则化 防止过拟合 如果有模块请问输入输出可以链接什么

更新时间:2023-10-09 07:58

Transformer模型固化后预测出错?

{w:100}

\

更新时间:2023-10-09 07:35

用财务因子怎么构建机器学习策略?

\

更新时间:2023-10-09 07:09

Tabnet如何实现分类任务

https://bigquant.com/experimentshare/75aff243f241447da1d1994ed9d29c44

如何实现分类任务啊,怎么在原有策略上修改

更新时间:2023-10-09 07:05

stockranker训练时出错的问题

{w:100} {w:100}

更新时间:2023-10-09 06:35

如何优化策略?

请问:

比如,我开发一个策略,回测两年时间,前一年的表现很好,后一年的表现很差,那么该如何优化让策略长期表现一致呢?

谢谢

更新时间:2023-10-09 06:03

回测正常,模拟交易始终不出信号是什么原因

https://bigquant.com/wiki/doc/shizhi-celve-v-10-Jhc4IN7nXK

直接克隆的知识库-平台使用文档中的样例策略(https://bigquant.com/wiki/doc/shizhi-celve-v-10-Jhc4IN7nXK),回测完全正常。但是模拟交易时,始终不出交易信号。不知道模拟交易时运行各个模块的原理和回测的原理有什么不同?

注:并不是因为22天才调仓的原因,第一天运行都不出信号。感觉在模拟交易时回测模块之前连接的模块运行结果不对,输入给回测模块的数据有误。只是个人猜测。不知道真实原因,请高手指点,谢谢!


模拟交易

更新时间:2023-10-09 03:40

二分类模型的评估组件报错

https://bigquant.com/experimentshare/20119409c088405dbb7e14dca685958a

\

更新时间:2023-10-09 03:40

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2023-09-01 02:45

TensorFlow教程翻译 | Neural Machine Translation(seq2seq) Tutorial

写在前面:读TensorFlow的这篇官网教程,给了我很大的帮助,该教程对seq2seq模型在理论上和代码实现上都有简要介绍。感觉有必要翻译一下做个记录,文章很长,不会做到一字一句的翻译,有些不好翻译的地方我会给出原句,有不严谨的地方望谅解。

本文目录:

  • 前沿 | Introduction
  • 基础 | Basic
  • 训练- 如何构建我们的第一个NMT系统
  • 词向量 | Embedding
  • 编码器 | Encoder
  • 解码器 | Decoder
  • 损失 | Loss
  • **梯度计算和优化 | Gradient co

更新时间:2023-06-14 03:02

分页第1页第2页第3页第4页第5页