过拟合

在金融领域,"过拟合"是一个重要概念,尤其在使用复杂模型和算法进行数据分析和预测时。过拟合主要指的是模型在训练数据上表现过于优越,以至于把训练数据中的噪声或特殊情况也考虑进去,从而使得模型在新的、未见过的数据上表现不佳。 更具体地说,当一个模型过度拟合训练数据时,它会将自身调整得过于复杂,以适应训练数据中的每一个细节。这导致模型对训练数据的预测非常准确,但对新数据的预测能力大大降低。在金融市场的应用中,这可能意味着模型在历史数据上表现良好,但在实际交易中却无法实现预期的回报。 过拟合的原因有很多,例如训练数据量不足、模型复杂度过高、训练时间过长等。为了防止过拟合,金融从业人员通常会采用一系列策略,如交叉验证、使用正则化方法、提前停止训练、增加训练数据量、降低模型复杂度等。这些方法的目标都是使模型能够在不见过的数据上保持稳健的预测性能,从而在实际金融决策中提供可靠的依据。

【平台使用】用财务因子怎么构建机器学习策略?

\

更新时间:2025-02-16 02:18

【代码报错】训练过程中报错,请问该怎么解决

https://bigquant.com/codeshare/10296b06-11cf-475f-80e7-81b7f0fbc5d5

\

更新时间:2025-02-16 01:32

【平台使用】关于DQN模型错误,为什么错,怎么操作,怎么构架一个优秀的深度强化模型

https://bigquant.com/codeshare/e91330dd-e6b5-40ca-ba6a-b76050db6c40

\

更新时间:2025-02-16 01:27

【平台使用】“StockRanker训练”模块使用以前训练保存的模型作为”基础模型“继续训练报错

https://bigquant.com/experimentshare/e2289bba09a64d1cb84d9412e72ae393

\

更新时间:2025-02-16 01:15

【其他】请问如何搭建简单的resnet

问题

请问如何搭建简单的resnet

就给我展示最小单元好了

更新时间:2025-02-16 01:14

【其他】DNN模型训练次数越多,效果越差?

DNN模型进行训练

Epoch设为1000,训练得出的效果反而比设为5更差,是什么原因?如何选择训练后的最好模型进行保存?谢谢!

更新时间:2025-02-16 01:12

【其他】请问StockRanker如何正则化 防止过拟合

问题

请问StockRanker如何正则化 防止过拟合 如果有模块请问输入输出可以链接什么

更新时间:2025-02-16 01:12

【代码报错】Transformer模型固化后预测出错?

{w:100}

\

更新时间:2025-02-16 01:06

【其他】Tabnet如何实现分类任务

https://bigquant.com/experimentshare/75aff243f241447da1d1994ed9d29c44

如何实现分类任务啊,怎么在原有策略上修改

更新时间:2025-02-15 15:36

【平台使用】stockranker训练时出错的问题

{w:100} {w:100}

更新时间:2025-02-15 15:16

【其他】如何优化策略?

请问:

比如,我开发一个策略,回测两年时间,前一年的表现很好,后一年的表现很差,那么该如何优化让策略长期表现一致呢?

谢谢

更新时间:2025-02-15 14:46

【代码报错】二分类模型的评估组件报错

https://bigquant.com/experimentshare/20119409c088405dbb7e14dca685958a

\

更新时间:2025-02-15 14:38

【其他】如何只选择中证1000成分股进行回测

如标题

更新时间:2025-02-15 13:24

【平台使用】回测正常,模拟交易始终不出信号是什么原因

https://bigquant.com/wiki/doc/shizhi-celve-v-10-Jhc4IN7nXK

直接克隆的知识库-平台使用文档中的样例策略(https://bigquant.com/wiki/doc/shizhi-celve-v-10-Jhc4IN7nXK),回测完全正常。但是模拟交易时,始终不出交易信号。不知道模拟交易时运行各个模块的原理和回测的原理有什么不同?

注:并不是因为22天才调仓的原因,第一天运行都不出信号。感觉在模拟交易时回测模块之前连接的模块运行结果不对,输入给回测模块的数据有误。只是个人猜测。不知道真实原因,请高手指点,谢谢!


模拟交易

更新时间:2025-02-15 12:37

Machine Learning is Fun! — 全世界最简单的机器学习入门指南

你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!

这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放弃,希望能有人给出一个更直观的解释。本文就是你们想要的东西。

本文的写作目标是让任何人都能看懂,这意味着文中有大量的概括。但是那又如何呢?只要能让读者对机器学习更感兴趣,这篇文章的任务也就完成了。

什么是机器学习?

机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Gene

更新时间:2024-12-04 08:53

Word2Vec 学习心得

好嘛博主食言了。不过本文没什么干货,主要是前后看了大概一个星期,反复去读源码和解读文章,终于感觉这东西不那么云山雾罩了。同时也发现网上很多材料有点扯淡,99% 的博文不过是把别人的东西用自己的话说一下,人云亦云。好多人自己理解错了而不自知,实在是误人误己。

我也不敢说理解得有多深,下面的内容甚至可能有自相矛盾的地方,所以阅读本文时请一定擦亮眼睛,认真思考。

源码才是根本,作者那两篇论文感觉参考价值也不高。说到底,Machine Learning/Deep Learning 的价值在于实践,而实际开发的应用中经过大量的 tricks 之后,代码跟论文推导、实验可能相去甚远。

Data Mi

更新时间:2024-06-12 06:06

Word2Vec介绍: 为什么使用负采样(negtive sample)?

目录

  1. 随机梯度下降法有什么问题?
  2. 负采样
  3. 计算梯度

1. 随机梯度下降法有什么问题?

通过对代价函数求权重的梯度,我们可以一次性对所有的参数 theta 进行优化,但是如果每次等全部计算完成再优化升级,我们将等待很长时间(对于很大的语料库来说)。

所以我们采用随机梯度下降( Stochastic Gradient Descent),也就是说每次完成一次计算就进行升级。

但是,还有两个问题导致目前的模型效率低下!

第一个问题,我们每次只对窗口

更新时间:2024-06-12 06:06

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-12 06:00

监督式机器学习算法的应用:择时

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


\

导语

《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在

更新时间:2024-06-12 05:57

过拟合详解

导语

本文为Mehmet Süzen撰写文章的译文,稍有删改。文章清晰地阐释和区分过度拟合及过度拟合等概念,对于本领域学习者正确理解专业术语多有帮助。正如作者在原文末所指出的:对待简单的概念,我们也应抱着积极求学的态度,了解其成立的基础。

前言

大多数从业者对”过拟合“这一概念存在误解。在数据科学界,始终存在一种类似于民间说法的观点:“利用交叉验证可以防止过拟合。在样本外对模型进行验证,如果不存在泛化误差,则模型不存在过拟合”

这个说法显然是不对的:交叉验证并不能阻止模型过拟合。样本外的良好预测性能并不能保证模型不存在过拟合。在这个说法中,前部分说的概念其实是“过度训练”。

更新时间:2024-06-12 05:53

关于线性回归、岭回归和Lasso回归的综合入门指南

https://bigquant.com/experimentshare/c451f287332a411cb4c7756c457318f6

\

更新时间:2024-06-12 05:48

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2024-06-11 03:20

深度学习在期货高频上的应用

问题

深度学习在期货高频上的应用

策略源码

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

LSTM+CNN深度学习预测股价

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/c13d6baefe5d4c75bb87eea9364b0f75

\

更新时间:2024-06-07 10:55

通过什么指标或方法进行训练集时间段的选择呢?

问题

在训练模型的时候,训练集的时间段和当前市场风格越接近,实盘效果越好。那么,通过什么指标或方法进行训练集时间段的选择呢?

视频

https://www.bilibili.com/video/BV1Gi4y1Z71L?share_source=copy_web

\

更新时间:2024-06-07 10:55

分页第1页第2页第3页第4页
{link}