复制链接
克隆策略

TabNet在量化选股中的应用

TabNet: Attentive Interpretable Tabular Learning

基于Tabnet模型的量化选股方案。抽取了98个量价因子,2010到2018年为数据训练TabNet模型,并将模型的预测结果应用在2018到2021年9月的数据上进行了回测。

TabNet核心参数

  • input_dim: 输入的特征数
  • n_steps: 决策的步数,通常为{3 ~ 10}
  • n_d: 预测阶段的特征数,通常为{8 ~ 64}
  • n_a: Attentive阶段的特征数,通常为{8 ~ 64}
  • gamma: Attentive中注意力更新的比例,通常为{1.0 ~ 2.0}
  • momentum: BN层的动量,通常为{0.0 ~ 1.0}

    {"description":"实验创建于2021/8/27","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-276:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-293:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-645:input_data_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-288:input_data","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-293:input_data","from_node_id":"-129:data"},{"to_node_id":"-436:input_1","from_node_id":"-243:data"},{"to_node_id":"-557:input_data","from_node_id":"-251:data"},{"to_node_id":"-544:training_data","from_node_id":"-436:data_1"},{"to_node_id":"-544:validation_data","from_node_id":"-436:data_2"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-288:data"},{"to_node_id":"-251:input_data","from_node_id":"-293:data"},{"to_node_id":"-645:input_data_2","from_node_id":"-293:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-276:data"},{"to_node_id":"-557:trained_model","from_node_id":"-544:data"},{"to_node_id":"-2431:input_1","from_node_id":"-557:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"-17923:raw_perf","from_node_id":"-141:raw_perf"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2018-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"600009.SHA\n600016.SHA\n600028.SHA\n600031.SHA\n600085.SHA\n600111.SHA\n600276.SHA\n600362.SHA\n600383.SHA\n600426.SHA\n600519.SHA\n600585.SHA\n600600.SHA\n600660.SHA\n600837.SHA\n601006.SHA\n601328.SHA\n601398.SHA\n601601.SHA\n601628.SHA\n601668.SHA\n601808.SHA\n601857.SHA\n601898.SHA\n601939.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"return_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n\n# close_0\n# open_0\n# high_0\n# low_0 \n# amount_0\n# turn_0 \n# return_0\n \n# close_1\n# open_1\n# high_1\n# low_1\n# return_1\n# amount_1\n# turn_1\n \n# close_2\n# open_2\n# high_2\n# low_2\n# amount_2\n# turn_2\n# return_2\n \n# close_3\n# open_3\n# high_3\n# low_3\n# amount_3\n# turn_3\n# return_3\n \n# close_4\n# open_4\n# high_4\n# low_4\n# amount_4\n# turn_4\n# return_4\n \n# mean(close_0, 5)\n# mean(low_0, 5)\n# mean(open_0, 5)\n# mean(high_0, 5)\n# mean(turn_0, 5)\n# mean(amount_0, 5)\n# mean(return_0, 5)\n \n# # ts_max(close_0, 5)\n# # ts_max(low_0, 5)\n# # ts_max(open_0, 5)\n# # ts_max(high_0, 5)\n# # ts_max(turn_0, 5)\n# # ts_max(amount_0, 5)\n# # ts_max(return_0, 5)\n \n# # ts_min(close_0, 5)\n# # ts_min(low_0, 5)\n# # ts_min(open_0, 5)\n# # ts_min(high_0, 5)\n# # ts_min(turn_0, 5)\n# # ts_min(amount_0, 5)\n# # ts_min(return_0, 5) \n \n# std(close_0, 5)\n# std(low_0, 5)\n# std(open_0, 5)\n# std(high_0, 5)\n# std(turn_0, 5)\n# std(amount_0, 5)\n# std(return_0, 5)\n \n# ts_rank(close_0, 5)\n# ts_rank(low_0, 5)\n# ts_rank(open_0, 5)\n# ts_rank(high_0, 5)\n# ts_rank(turn_0, 5)\n# ts_rank(amount_0, 5)\n# ts_rank(return_0, 5)\n \n# decay_linear(close_0, 5)\n# decay_linear(low_0, 5)\n# decay_linear(open_0, 5)\n# decay_linear(high_0, 5)\n# decay_linear(turn_0, 5)\n# decay_linear(amount_0, 5)\n# decay_linear(return_0, 5)\n \n# correlation(volume_0, return_0, 5)\n# correlation(volume_0, high_0, 5)\n# correlation(volume_0, low_0, 5)\n# correlation(volume_0, close_0, 5)\n# correlation(volume_0, open_0, 5)\n# correlation(volume_0, turn_0, 5)\n \n# # correlation(return_0, high_0, 5)\n# # correlation(return_0, low_0, 5)\n# # correlation(return_0, close_0, 5)\n# # correlation(return_0, open_0, 5)\n# # correlation(return_0, turn_0, 5)\n \n# # correlation(high_0, low_0, 5)\n# # correlation(high_0, close_0, 5)\n# # correlation(high_0, open_0, 5)\n# # correlation(high_0, turn_0, 5)\n \n# # correlation(low_0, close_0, 5)\n# # correlation(low_0, open_0, 5)\n# # correlation(low_0, turn_0, 5)\n \n# # correlation(close_0, open_0, 5)\n# # correlation(close_0, turn_0, 5)\n\n# # correlation(open_0, turn_0, 5)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2023-04-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"600009.SHA\n600016.SHA\n600028.SHA\n600031.SHA\n600085.SHA\n600111.SHA\n600276.SHA\n600362.SHA\n600383.SHA\n600426.SHA\n600519.SHA\n600585.SHA\n600600.SHA\n600660.SHA\n600837.SHA\n601006.SHA\n601328.SHA\n601398.SHA\n601601.SHA\n601628.SHA\n601668.SHA\n601808.SHA\n601857.SHA\n601898.SHA\n601939.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":5,"comment":"预测数据,用于回测和模拟","comment_collapsed":true},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":"3","type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-436","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n from sklearn.model_selection import train_test_split\n data = input_1.read()\n x_train, x_val, y_train, y_val = train_test_split(data[\"x\"], data['y'], random_state=2021)\n data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train.reshape(-1, 1)})\n data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val.reshape(-1, 1)})\n return Outputs(data_1=data_1, data_2=data_2, data_3=None)","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-436"},{"name":"input_2","node_id":"-436"},{"name":"input_3","node_id":"-436"}],"output_ports":[{"name":"data_1","node_id":"-436"},{"name":"data_2","node_id":"-436"},{"name":"data_3","node_id":"-436"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-293","module_id":"BigQuantSpace.fillnan.fillnan-v1","parameters":[{"name":"fill_value","value":"0.0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-293"},{"name":"features","node_id":"-293"}],"output_ports":[{"name":"data","node_id":"-293"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-276","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-276"},{"name":"input_2","node_id":"-276"}],"output_ports":[{"name":"data","node_id":"-276"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-544","module_id":"BigQuantSpace.dl_models_tabnet_train.dl_models_tabnet_train-v1","parameters":[{"name":"input_dim","value":"13","type":"Literal","bound_global_parameter":null},{"name":"n_steps","value":"3","type":"Literal","bound_global_parameter":null},{"name":"n_d","value":"32","type":"Literal","bound_global_parameter":null},{"name":"n_a","value":"32","type":"Literal","bound_global_parameter":null},{"name":"gamma","value":"1.3","type":"Literal","bound_global_parameter":null},{"name":"momentum","value":"0.02","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"5120","type":"Literal","bound_global_parameter":null},{"name":"virtual_batch_size","value":"512","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"100","type":"Literal","bound_global_parameter":null},{"name":"num_workers","value":"4","type":"Literal","bound_global_parameter":null},{"name":"device_name","value":"auto:自动调用GPU","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"1:输出进度条记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_data","node_id":"-544"},{"name":"validation_data","node_id":"-544"}],"output_ports":[{"name":"data","node_id":"-544"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-557","module_id":"BigQuantSpace.dl_models_tabnet_predict.dl_models_tabnet_predict-v1","parameters":[],"input_ports":[{"name":"trained_model","node_id":"-557"},{"name":"input_data","node_id":"-557"}],"output_ports":[{"name":"data","node_id":"-557"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.001, sell_cost=0.001, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-17923","module_id":"BigQuantSpace.strategy_turn_analysis.strategy_turn_analysis-v1","parameters":[],"input_ports":[{"name":"raw_perf","node_id":"-17923"}],"output_ports":[{"name":"data","node_id":"-17923"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-645","module_id":"BigQuantSpace.concat.concat-v3","parameters":[],"input_ports":[{"name":"input_data_1","node_id":"-645"},{"name":"input_data_2","node_id":"-645"},{"name":"input_data_3","node_id":"-645"}],"output_ports":[{"name":"data","node_id":"-645"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='190,1,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='0,142,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='721,-66,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='145,397,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1123,1,200,200'/><node_position Node='-106' Position='436,108,200,200'/><node_position Node='-113' Position='430,172,200,200'/><node_position Node='-122' Position='1135,144,200,200'/><node_position Node='-129' Position='1072,238,200,200'/><node_position Node='-243' Position='311,556,200,200'/><node_position Node='-251' Position='964,748,200,200'/><node_position Node='-436' Position='335,651,200,200'/><node_position Node='-288' Position='433,319,200,200'/><node_position Node='-293' Position='1143,464,200,200'/><node_position Node='-276' Position='19,243,200,200'/><node_position Node='-544' Position='429,756,200,200'/><node_position Node='-557' Position='715.2553100585938,857.5106201171875,200,200'/><node_position Node='-2431' Position='737.1808471679688,964.372314453125,200,200'/><node_position Node='-141' Position='592,1055,200,200'/><node_position Node='-17923' Position='618,1143,200,200'/><node_position Node='-645' Position='1128,621,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [17]:
    # 本代码由可视化策略环境自动生成 2023年5月25日 18:13
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m12_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        from sklearn.model_selection import train_test_split
        data = input_1.read()
        x_train, x_val, y_train, y_val = train_test_split(data["x"], data['y'], random_state=2021)
        data_1 = DataSource.write_pickle({'x': x_train, 'y': y_train.reshape(-1, 1)})
        data_2 = DataSource.write_pickle({'x': x_val, 'y': y_val.reshape(-1, 1)})
        return Outputs(data_1=data_1, data_2=data_2, data_3=None)
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m12_post_run_bigquant_run(outputs):
        return outputs
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m20_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m20_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m21_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.001, sell_cost=0.001, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.options['hold_days'] = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m21_handle_data_bigquant_run(context, data):
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        # 1. 资金分配
        # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
        # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
        is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
        cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
        cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
        cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
        if not is_staging and cash_for_sell > 0:
            equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}
            instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
                    lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))
            # print('rank order for sell %s' % instruments)
            for instrument in instruments:
                context.order_target(context.symbol(instrument), 0)
                cash_for_sell -= positions[instrument]
                if cash_for_sell <= 0:
                    break
    
        # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
        buy_cash_weights = context.stock_weights
        buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
        max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
        for i, instrument in enumerate(buy_instruments):
            cash = cash_for_buy * buy_cash_weights[i]
            if cash > max_cash_per_instrument - positions.get(instrument, 0):
                # 确保股票持仓量不会超过每次股票最大的占用资金量
                cash = max_cash_per_instrument - positions.get(instrument, 0)
            if cash > 0:
                context.order_value(context.symbol(instrument), cash)
    
    # 回测引擎:准备数据,只执行一次
    def m21_prepare_bigquant_run(context):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2018-01-01',
        end_date='2021-12-31',
        market='CN_STOCK_A',
        instrument_list="""600009.SHA
    600016.SHA
    600028.SHA
    600031.SHA
    600085.SHA
    600111.SHA
    600276.SHA
    600362.SHA
    600383.SHA
    600426.SHA
    600519.SHA
    600585.SHA
    600600.SHA
    600660.SHA
    600837.SHA
    601006.SHA
    601328.SHA
    601398.SHA
    601601.SHA
    601628.SHA
    601668.SHA
    601808.SHA
    601857.SHA
    601898.SHA
    601939.SHA""",
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)-1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False
    )
    
    m17 = M.standardlize.v8(
        input_1=m2.data,
        columns_input='label'
    )
    
    m3 = M.input_features.v1(
        features="""return_5
    return_10
    return_20
    avg_amount_0/avg_amount_5
    avg_amount_5/avg_amount_20
    rank_avg_amount_0/rank_avg_amount_5
    rank_avg_amount_5/rank_avg_amount_10
    rank_return_0
    rank_return_5
    rank_return_10
    rank_return_0/rank_return_5
    rank_return_5/rank_return_10
    pe_ttm_0
    
    # close_0
    # open_0
    # high_0
    # low_0 
    # amount_0
    # turn_0 
    # return_0
     
    # close_1
    # open_1
    # high_1
    # low_1
    # return_1
    # amount_1
    # turn_1
     
    # close_2
    # open_2
    # high_2
    # low_2
    # amount_2
    # turn_2
    # return_2
     
    # close_3
    # open_3
    # high_3
    # low_3
    # amount_3
    # turn_3
    # return_3
     
    # close_4
    # open_4
    # high_4
    # low_4
    # amount_4
    # turn_4
    # return_4
     
    # mean(close_0, 5)
    # mean(low_0, 5)
    # mean(open_0, 5)
    # mean(high_0, 5)
    # mean(turn_0, 5)
    # mean(amount_0, 5)
    # mean(return_0, 5)
     
    # # ts_max(close_0, 5)
    # # ts_max(low_0, 5)
    # # ts_max(open_0, 5)
    # # ts_max(high_0, 5)
    # # ts_max(turn_0, 5)
    # # ts_max(amount_0, 5)
    # # ts_max(return_0, 5)
     
    # # ts_min(close_0, 5)
    # # ts_min(low_0, 5)
    # # ts_min(open_0, 5)
    # # ts_min(high_0, 5)
    # # ts_min(turn_0, 5)
    # # ts_min(amount_0, 5)
    # # ts_min(return_0, 5) 
     
    # std(close_0, 5)
    # std(low_0, 5)
    # std(open_0, 5)
    # std(high_0, 5)
    # std(turn_0, 5)
    # std(amount_0, 5)
    # std(return_0, 5)
     
    # ts_rank(close_0, 5)
    # ts_rank(low_0, 5)
    # ts_rank(open_0, 5)
    # ts_rank(high_0, 5)
    # ts_rank(turn_0, 5)
    # ts_rank(amount_0, 5)
    # ts_rank(return_0, 5)
     
    # decay_linear(close_0, 5)
    # decay_linear(low_0, 5)
    # decay_linear(open_0, 5)
    # decay_linear(high_0, 5)
    # decay_linear(turn_0, 5)
    # decay_linear(amount_0, 5)
    # decay_linear(return_0, 5)
     
    # correlation(volume_0, return_0, 5)
    # correlation(volume_0, high_0, 5)
    # correlation(volume_0, low_0, 5)
    # correlation(volume_0, close_0, 5)
    # correlation(volume_0, open_0, 5)
    # correlation(volume_0, turn_0, 5)
      
    # # correlation(return_0, high_0, 5)
    # # correlation(return_0, low_0, 5)
    # # correlation(return_0, close_0, 5)
    # # correlation(return_0, open_0, 5)
    # # correlation(return_0, turn_0, 5)
     
    # # correlation(high_0, low_0, 5)
    # # correlation(high_0, close_0, 5)
    # # correlation(high_0, open_0, 5)
    # # correlation(high_0, turn_0, 5)
     
    # # correlation(low_0, close_0, 5)
    # # correlation(low_0, open_0, 5)
    # # correlation(low_0, turn_0, 5)
     
    # # correlation(close_0, open_0, 5)
    # # correlation(close_0, turn_0, 5)
    
    # # correlation(open_0, turn_0, 5)"""
    )
    
    m6 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=10
    )
    
    m7 = M.derived_feature_extractor.v3(
        input_data=m6.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m14 = M.fillnan.v1(
        input_data=m7.data,
        features=m3.data,
        fill_value='0.0'
    )
    
    m4 = M.join.v3(
        data1=m17.data,
        data2=m14.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m10 = M.dl_convert_to_bin.v2(
        input_data=m4.data,
        features=m3.data,
        window_size=1,
        feature_clip=3,
        flatten=True,
        window_along_col='instrument'
    )
    
    m12 = M.cached.v3(
        input_1=m10.data,
        run=m12_run_bigquant_run,
        post_run=m12_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m18 = M.dl_models_tabnet_train.v1(
        training_data=m12.data_1,
        validation_data=m12.data_2,
        input_dim=13,
        n_steps=3,
        n_d=32,
        n_a=32,
        gamma=1.3,
        momentum=0.02,
        batch_size=5120,
        virtual_batch_size=512,
        epochs=100,
        num_workers=4,
        device_name='auto:自动调用GPU',
        verbose='1:输出进度条记录'
    )
    
    m5 = M.instruments.v2(
        start_date='2022-01-01',
        end_date='2023-04-30',
        market='CN_STOCK_A',
        instrument_list="""600009.SHA
    600016.SHA
    600028.SHA
    600031.SHA
    600085.SHA
    600111.SHA
    600276.SHA
    600362.SHA
    600383.SHA
    600426.SHA
    600519.SHA
    600585.SHA
    600600.SHA
    600660.SHA
    600837.SHA
    601006.SHA
    601328.SHA
    601398.SHA
    601601.SHA
    601628.SHA
    601668.SHA
    601808.SHA
    601857.SHA
    601898.SHA
    601939.SHA""",
        max_count=0
    )
    
    m8 = M.general_feature_extractor.v7(
        instruments=m5.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=10
    )
    
    m9 = M.derived_feature_extractor.v3(
        input_data=m8.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m15 = M.fillnan.v1(
        input_data=m9.data,
        features=m3.data,
        fill_value='0.0'
    )
    
    m11 = M.dl_convert_to_bin.v2(
        input_data=m15.data,
        features=m3.data,
        window_size=1,
        feature_clip=3,
        flatten=True,
        window_along_col='instrument'
    )
    
    m19 = M.dl_models_tabnet_predict.v1(
        trained_model=m18.data,
        input_data=m11.data,
        m_cached=False
    )
    
    m20 = M.cached.v3(
        input_1=m19.data,
        input_2=m9.data,
        run=m20_run_bigquant_run,
        post_run=m20_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m16 = M.concat.v3(
        input_data_1=m4.data,
        input_data_2=m15.data
    )
    
    m21 = M.trade.v4(
        instruments=m5.data,
        options_data=m20.data_1,
        start_date='',
        end_date='',
        initialize=m21_initialize_bigquant_run,
        handle_data=m21_handle_data_bigquant_run,
        prepare=m21_prepare_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='后复权',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    
    m22 = M.strategy_turn_analysis.v1(
        raw_perf=m21.raw_perf
    )
    
    Device used : cpu
    
    • 收益率-6.25%
    • 年化收益率-4.96%
    • 基准收益率-18.45%
    • 阿尔法0.08
    • 贝塔0.78
    • 夏普比率-0.3
    • 胜率0.52
    • 盈亏比0.97
    • 收益波动率20.19%
    • 信息比率0.05
    • 最大回撤24.08%
    bigcharts-data-start/{"__type":"tabs","__id":"bigchart-22f18b13adcb43e7a44966f421e1de7f"}/bigcharts-data-end
    In [ ]:
    # 输出predict
    predict_df = m20.data_1.read()
    predict_df.head()
    
    In [ ]:
    predict_df.to_csv("tabnet_predict.csv")
    
    In [ ]: