{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-773:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-768:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-778:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3895:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-3907:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-141:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-768:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-2431:input_2","from_node_id":"-129:data"},{"to_node_id":"-778:input_1","from_node_id":"-129:data"},{"to_node_id":"-2680:inputs","from_node_id":"-160:data"},{"to_node_id":"-3880:inputs","from_node_id":"-160:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2431:input_1","from_node_id":"-1540:data"},{"to_node_id":"-141:options_data","from_node_id":"-2431:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-768:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-773:data"},{"to_node_id":"-251:input_data","from_node_id":"-778:data"},{"to_node_id":"-3895:input_1","from_node_id":"-243:data"},{"to_node_id":"-3907:input_1","from_node_id":"-251:data"},{"to_node_id":"-2712:inputs","from_node_id":"-2680:data"},{"to_node_id":"-3840:inputs","from_node_id":"-2712:data"},{"to_node_id":"-2828:inputs","from_node_id":"-3773:data"},{"to_node_id":"-3880:outputs","from_node_id":"-3784:data"},{"to_node_id":"-3872:inputs","from_node_id":"-3840:data"},{"to_node_id":"-3773:inputs","from_node_id":"-3872:data"},{"to_node_id":"-1098:input_model","from_node_id":"-3880:data"},{"to_node_id":"-1098:training_data","from_node_id":"-3895:data_1"},{"to_node_id":"-1540:input_data","from_node_id":"-3907:data_1"},{"to_node_id":"-3784:inputs","from_node_id":"-2828:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":" ","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-141","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 20\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 2\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days']\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"后复权","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-141"},{"name":"options_data","node_id":"-141"},{"name":"history_ds","node_id":"-141"},{"name":"benchmark_ds","node_id":"-141"},{"name":"trading_calendar","node_id":"-141"}],"output_ports":[{"name":"raw_perf","node_id":"-141"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"7,5","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"RMSprop","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"256","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"6","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":"0","type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-2431","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2431"},{"name":"input_2","node_id":"-2431"},{"name":"input_3","node_id":"-2431"}],"output_ports":[{"name":"data_1","node_id":"-2431"},{"name":"data_2","node_id":"-2431"},{"name":"data_3","node_id":"-2431"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-768","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-768"},{"name":"input_2","node_id":"-768"}],"output_ports":[{"name":"data","node_id":"-768"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-773","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-773"},{"name":"input_2","node_id":"-773"}],"output_ports":[{"name":"data","node_id":"-773"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-778","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-778"},{"name":"input_2","node_id":"-778"}],"output_ports":[{"name":"data","node_id":"-778"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":"5","type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-2680","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"20","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":"0","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-2680"}],"output_ports":[{"name":"data","node_id":"-2680"}],"cacheable":false,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-2712","module_id":"BigQuantSpace.dl_layer_maxpooling1d.dl_layer_maxpooling1d-v1","parameters":[{"name":"pool_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-2712"}],"output_ports":[{"name":"data","node_id":"-2712"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-3773","module_id":"BigQuantSpace.dl_layer_globalmaxpooling1d.dl_layer_globalmaxpooling1d-v1","parameters":[{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-3773"}],"output_ports":[{"name":"data","node_id":"-3773"}],"cacheable":false,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-3784","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-3784"}],"output_ports":[{"name":"data","node_id":"-3784"}],"cacheable":false,"seq_num":30,"comment":"","comment_collapsed":true},{"node_id":"-3840","module_id":"BigQuantSpace.dl_layer_conv1d.dl_layer_conv1d-v1","parameters":[{"name":"filters","value":"20","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":1,"type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-3840"}],"output_ports":[{"name":"data","node_id":"-3840"}],"cacheable":false,"seq_num":32,"comment":"","comment_collapsed":true},{"node_id":"-3872","module_id":"BigQuantSpace.dl_layer_maxpooling1d.dl_layer_maxpooling1d-v1","parameters":[{"name":"pool_size","value":"1","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-3872"}],"output_ports":[{"name":"data","node_id":"-3872"}],"cacheable":false,"seq_num":33,"comment":"","comment_collapsed":true},{"node_id":"-3880","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-3880"},{"name":"outputs","node_id":"-3880"}],"output_ports":[{"name":"data","node_id":"-3880"}],"cacheable":false,"seq_num":34,"comment":"","comment_collapsed":true},{"node_id":"-3895","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_pickle()\n feature_len = len(input_2.read_pickle())\n \n \n df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))\n \n data_1 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3895"},{"name":"input_2","node_id":"-3895"},{"name":"input_3","node_id":"-3895"}],"output_ports":[{"name":"data_1","node_id":"-3895"},{"name":"data_2","node_id":"-3895"},{"name":"data_3","node_id":"-3895"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-3907","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_pickle()\n feature_len = len(input_2.read_pickle())\n \n \n df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))\n \n data_1 = DataSource.write_pickle(df)\n return Outputs(data_1=data_1)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3907"},{"name":"input_2","node_id":"-3907"},{"name":"input_3","node_id":"-3907"}],"output_ports":[{"name":"data_1","node_id":"-3907"},{"name":"data_2","node_id":"-3907"},{"name":"data_3","node_id":"-3907"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-2828","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-2828"}],"output_ports":[{"name":"data","node_id":"-2828"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='394,20,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='208,220,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='800,-49,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='379,435,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='-106' Position='547,173,200,200'/><node_position Node='-113' Position='548,275,200,200'/><node_position Node='-122' Position='1078,236,200,200'/><node_position Node='-129' Position='1081,327,200,200'/><node_position Node='-141' Position='585,951,200,200'/><node_position Node='-160' Position='-67,-142,200,200'/><node_position Node='-1098' Position='175,647,200,200'/><node_position Node='-1540' Position='203,730,200,200'/><node_position Node='-2431' Position='370,854,200,200'/><node_position Node='-768' Position='569,357,200,200'/><node_position Node='-773' Position='230,329,200,200'/><node_position Node='-778' Position='1067,430,200,200'/><node_position Node='-243' Position='384,492,200,200'/><node_position Node='-251' Position='1061,508,200,200'/><node_position Node='-2680' Position='-84,-53,200,200'/><node_position Node='-2712' Position='-88,35,200,200'/><node_position Node='-3773' Position='-99.02424621582031,299.6141357421875,200,200'/><node_position Node='-3784' Position='-80,467,200,200'/><node_position Node='-3840' Position='-86,121,200,200'/><node_position Node='-3872' Position='-88,214,200,200'/><node_position Node='-3880' Position='-85,535,200,200'/><node_position Node='-3895' Position='385,569,200,200'/><node_position Node='-3907' Position='1056,590,200,200'/><node_position Node='-2828' Position='-101,399,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2021-11-20 11:39:51.692908] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-11-20 11:39:51.712102] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.714706] INFO: moduleinvoker: instruments.v2 运行完成[0.021812s].
[2021-11-20 11:39:51.722872] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-11-20 11:39:51.734065] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.735638] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.012764s].
[2021-11-20 11:39:51.740331] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-11-20 11:39:51.751328] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.754508] INFO: moduleinvoker: standardlize.v8 运行完成[0.014152s].
[2021-11-20 11:39:51.762648] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-11-20 11:39:51.773328] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.777723] INFO: moduleinvoker: input_features.v1 运行完成[0.015047s].
[2021-11-20 11:39:51.796438] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-11-20 11:39:51.814936] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.817866] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.021434s].
[2021-11-20 11:39:51.826359] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-11-20 11:39:51.831900] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.833719] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.007367s].
[2021-11-20 11:39:51.841336] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-11-20 11:39:51.851286] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.854416] INFO: moduleinvoker: standardlize.v8 运行完成[0.013034s].
[2021-11-20 11:39:51.884462] INFO: moduleinvoker: join.v3 开始运行..
[2021-11-20 11:39:51.897239] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.899746] INFO: moduleinvoker: join.v3 运行完成[0.015289s].
[2021-11-20 11:39:51.910818] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-11-20 11:39:51.918327] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.920057] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.009238s].
[2021-11-20 11:39:51.931477] INFO: moduleinvoker: cached.v3 开始运行..
[2021-11-20 11:39:51.938358] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.939961] INFO: moduleinvoker: cached.v3 运行完成[0.008503s].
[2021-11-20 11:39:51.944837] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-11-20 11:39:51.949907] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.952452] INFO: moduleinvoker: instruments.v2 运行完成[0.007581s].
[2021-11-20 11:39:51.970465] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-11-20 11:39:51.983306] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:51.985773] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.015347s].
[2021-11-20 11:39:51.994540] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-11-20 11:39:52.002951] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:52.004528] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.010034s].
[2021-11-20 11:39:52.008871] INFO: moduleinvoker: standardlize.v8 开始运行..
[2021-11-20 11:39:52.019576] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:52.020889] INFO: moduleinvoker: standardlize.v8 运行完成[0.012012s].
[2021-11-20 11:39:52.031395] INFO: moduleinvoker: dl_convert_to_bin.v2 开始运行..
[2021-11-20 11:39:52.040693] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:52.042344] INFO: moduleinvoker: dl_convert_to_bin.v2 运行完成[0.010966s].
[2021-11-20 11:39:52.055074] INFO: moduleinvoker: cached.v3 开始运行..
[2021-11-20 11:39:52.067463] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:52.072056] INFO: moduleinvoker: cached.v3 运行完成[0.016977s].
[2021-11-20 11:39:52.107788] INFO: moduleinvoker: dl_layer_input.v1 运行完成[0.02708s].
[2021-11-20 11:39:52.133430] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.019763s].
[2021-11-20 11:39:52.145717] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.006492s].
[2021-11-20 11:39:52.183327] INFO: moduleinvoker: dl_layer_conv1d.v1 运行完成[0.030062s].
[2021-11-20 11:39:52.202774] INFO: moduleinvoker: dl_layer_maxpooling1d.v1 运行完成[0.012607s].
[2021-11-20 11:39:52.213912] INFO: moduleinvoker: dl_layer_globalmaxpooling1d.v1 运行完成[0.004742s].
[2021-11-20 11:39:52.224792] INFO: moduleinvoker: dl_layer_dropout.v1 运行完成[0.004358s].
[2021-11-20 11:39:52.240675] INFO: moduleinvoker: dl_layer_dense.v1 运行完成[0.010011s].
[2021-11-20 11:39:52.297336] INFO: moduleinvoker: cached.v3 开始运行..
[2021-11-20 11:39:52.315099] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:39:52.316719] INFO: moduleinvoker: cached.v3 运行完成[0.019404s].
[2021-11-20 11:39:52.318323] INFO: moduleinvoker: dl_model_init.v1 运行完成[0.07186s].
[2021-11-20 11:39:52.322675] INFO: moduleinvoker: dl_model_train.v1 开始运行..
[2021-11-20 11:39:53.182215] INFO: dl_model_train: 准备训练,训练样本个数:2583980,迭代次数:6
[2021-11-20 11:43:09.706319] INFO: dl_model_train: 训练结束,耗时:196.52s
[2021-11-20 11:43:09.786761] INFO: moduleinvoker: dl_model_train.v1 运行完成[197.464063s].
[2021-11-20 11:43:09.793146] INFO: moduleinvoker: dl_model_predict.v1 开始运行..
[2021-11-20 11:43:12.471710] INFO: moduleinvoker: dl_model_predict.v1 运行完成[2.67855s].
[2021-11-20 11:43:12.487742] INFO: moduleinvoker: cached.v3 开始运行..
[2021-11-20 11:43:15.465120] INFO: moduleinvoker: cached.v3 运行完成[2.977385s].
[2021-11-20 11:43:15.551485] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-11-20 11:43:15.557585] INFO: backtest: biglearning backtest:V8.5.1
[2021-11-20 11:43:15.560363] INFO: backtest: product_type:stock by specified
[2021-11-20 11:43:15.703033] INFO: moduleinvoker: cached.v2 开始运行..
[2021-11-20 11:43:15.711349] INFO: moduleinvoker: 命中缓存
[2021-11-20 11:43:15.713245] INFO: moduleinvoker: cached.v2 运行完成[0.010286s].
[2021-11-20 11:43:18.167285] INFO: algo: TradingAlgorithm V1.8.5
[2021-11-20 11:43:19.288771] INFO: algo: trading transform...
[2021-11-20 11:44:03.204281] INFO: Performance: Simulated 488 trading days out of 488.
[2021-11-20 11:44:03.205747] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2021-11-20 11:44:03.206805] INFO: Performance: last close: 2016-12-30 15:00:00+00:00
[2021-11-20 11:44:12.068583] INFO: moduleinvoker: backtest.v8 运行完成[56.517119s].
[2021-11-20 11:44:12.070599] INFO: moduleinvoker: trade.v4 运行完成[56.593318s].
Epoch 1/6
10094/10094 - 35s - loss: 0.9906 - mse: 0.9906
Epoch 2/6
10094/10094 - 33s - loss: 0.9879 - mse: 0.9879
Epoch 3/6
10094/10094 - 31s - loss: 0.9872 - mse: 0.9872
Epoch 4/6
10094/10094 - 31s - loss: 0.9868 - mse: 0.9868
Epoch 5/6
10094/10094 - 34s - loss: 0.9865 - mse: 0.9865
Epoch 6/6
10094/10094 - 33s - loss: 0.9863 - mse: 0.9863
1127/1127 - 2s
DataSource(989c72ca2ecb41aabd054c9ece528b43T)
- 收益率80.91%
- 年化收益率35.82%
- 基准收益率-6.33%
- 阿尔法0.47
- 贝塔0.93
- 夏普比率0.85
- 胜率0.55
- 盈亏比0.96
- 收益波动率44.51%
- 信息比率0.07
- 最大回撤60.24%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-dd2136b690fd46798680a40bcd91f9a0"}/bigcharts-data-end