股票市场

股票市场,是金融体系中至关重要的组成部分,它提供了一个平台,使得公司能够通过发行股票筹集资金,同时投资者可以在此买卖股票,寻求资本的增值。在股票市场中,价格的波动反映了市场对未来公司业绩的预期,同时也体现了宏观经济环境和市场情绪的变化。这个市场不仅为企业融资创造了机会,也为投资者提供了多元化的投资选择和风险管理的工具。然而,由于其高度敏感性和不确定性,股票市场也充满了挑战和风险,投资者需要深入研究,明智决策。

筹码理论的探索-筹码分布计算的实现

https://bigquant.com/codesharev2/42c80795-96ba-461e-8a80-e7f69b749e5b

\

更新时间:2024-06-11 02:19

一阳穿多线的因子描述

策略案例


https://bigquant.com/experimentshare/44df09d365584c4b9874df99f5f69c4f

\

更新时间:2024-06-07 10:55

51st MEETUP

PPT

/wiki/static/upload/1f/1fdcde6d-6311-49fc-a1ad-e533c840cf97.pdf

视频

https://www.bilibili.com/video/BV1zc411V7EW/?spm_id_from=333.999.0.0

\

更新时间:2024-06-07 10:55

机器学习应用于底部反转策略的表现

问题

《机器学习应用于底部反转策略的表现》

视频

https://www.bilibili.com/video/BV1Jd4y1g7Gi/?vd_source=ecd29bbd04cbefdfa426167c55241973&t=1.3

\

策略源码

详见上述链接

更新时间:2024-06-07 10:55

41st Meetup

\

更新时间:2024-06-07 10:55

标注模块+中性化

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

情绪周期中涨跌停数、最高板数等代码编写

问题

35th Meetup提到的情绪周期中最高板数,涨停家数,跌停家数,昨日涨停今日表现(赚钱效应)等具体代码的编写。

\

视频

https://www.bilibili.com/video/BV1nT4y1q7Ut/

策略源码

[https://bigquant.com/experimentshare/224aa4076333436ea5a570694376631a](https://bigquant.com/experimentshare/224aa40763334

更新时间:2024-06-07 10:55

44th Meetup

\

更新时间:2024-06-07 10:55

多因子选股如何筛选有效因子

问题

多因子选股如何筛选有效因子

回答

参考研报:

  1. 多因子系列之一:华泰多因子模型体系初探-华泰证券-20160921
  2. 多因子系列之二:华泰单因子测试之估值类因子-华泰证券-20160929

因子分析参考:

  1. [因子分析](https://bigquant.com/wiki/doc/yinz

更新时间:2024-06-07 10:55

2021-AI量化Meetup导览

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}导语

2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me

更新时间:2024-06-07 10:55

36th Meetup

\

更新时间:2024-06-07 10:55

45th Meetup

\

更新时间:2024-06-07 10:55

算法那么多,如何给策略选择最佳的算法?

\

作者

徐耀杰(woshisilvio)

常见算法优劣比较

算法没有最好,只有更好。 这个问题的答案取决于许多因素,例如股票市场的条件,数据集的质量和特征工程的有效等。接下来,我们来看看这些算法的优势和劣势:

  1. 神经网络:适用于复杂的非线性问题,可以有效地捕捉市场的非线性特征和复杂关系。
  2. 决策树:适用于数据量较小、特征维度较少的情况,可以很好地解释模型的决策过程。
  3. 随机森林:适用于处理高维度、复杂数据集,具有很好的鲁棒性和准确性。
  4. 支持向量机:适用于数据量较小、特征维度较高的情况,可以有效地处理非线性和线性可分问题。

正常情况下,在处理少量的股票量

更新时间:2024-06-07 10:55

波动率公式及使用技巧

波动率(Volatility)是金融市场中用于衡量资产价格随时间变化的程度。波动率越高,表示资产价格的变动幅度越大,风险也越高。在股票市场中,波动率通常以历史波动率(基于过去的价格变动)或隐含波动率(基于期权定价)来衡量。

BigQuant金融市场历史数据因子平台以及AI量化策略编写平台(PC端),可以验证波动率指标因子组成的量化策略。

![](/wiki/api/attachments.redirect

更新时间:2024-06-07 10:48

LSTM大盘择时+Stockranker选股

请参考新版的大盘择时

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/a5ed3eddf32f4e4dad4811a1acc257f0

\

更新时间:2024-05-24 10:28

【方正金工】成交量激增时刻蕴含的alpha信息——多因子选股系列研究之一

更新

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU



本文来自方正证券研究所于2022年4月12日发布的报告《成交量激增时刻蕴含的alpha信息——多因子选股系列研究之一》,欲了解具体内容,请阅读报告原文,分析师:曹春晓 S1220522030005。

摘要

在股票市场中,成交量的边际变化隐含着非常重要的信息,特别是在技术分析领域,成交量被认为是股票市场的原动力。俗语“量在价先”深刻的反

更新时间:2024-05-20 07:02

XGBoost的价值选股策略

文献回顾

回顾价值策略

价值策略通俗地讲就是买入便宜股票,卖出昂贵股票,思想非常简单和直观。但是实际操作上这非常困难,因为我们没办法直接观察股票的真实价值。投资者可以从不同的视角采用不同的指标来估计股票内在价值。在股票市场中,最传统的方法就是通过会计报表的各个条目得到企业估值,我们可以从资产负债表得到市净率,从利润表得到资产收益率,从现金流量表得到现金流比率。Ma和Smith(2014)在《Sorting through the trash》中提到通过市净率、预测下期资产收益率和股价/现金流这三个指标合成一个综合的“价值”因子,可以显著提升策略表现(MA采取了三个因子Z得

更新时间:2024-05-20 02:09

用StockRanker算法实现A股股票选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec

\

更新时间:2024-05-20 00:50

lstm+cnn+A股去ST+大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 03:48

StockRanker多因子选股策略

StockRanker多因子选股策略

https://bigquant.com/codesharev2/5d97cb4f-526b-45be-9527-5a6927873337

\

更新时间:2024-05-17 02:33

如何结合欧奈尔的RPS指标,开发AI量化策略?

若想在AIStudio3.0.0种复现这个策略, 请空降:

https://bigquant.com/wiki/doc/rpsai-lgPnmWzLkq

问题

如何结合欧奈尔的RPS指标,开发AI量化策略?

讲解


{w:100}{w:100}{w:100}{w:100}{w:100}


1988年,欧奈尔将他的投资

更新时间:2024-05-17 01:13

事件驱动策略(基于业绩快报)

事件驱动

事件驱动(Event Driven)属于量化投资之中的一个重要类别,涵盖投资机会广泛。广义上说,市场上任何发生的有可能与股票市场相关的新闻、事件、公告均有可能成为事件驱动的投资机会。 目前我国业界事件驱动策略中包括的常用重大事件有:业绩预告、业绩快报、分红送转、大股东增减持、高管增减持、定向增发、限售股解禁、股权激励、重组并购、ST摘和评级上调等,如下图所示。

可以看出,目前市场经过验证有效的事件已经不少,涵盖了影响股票价格

更新时间:2024-05-16 06:37

基于卷积神经网络的多因子预测

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/5z65lqo5y2356ev56we57up572r57uc55qe5asa5zug5a2q6ycj6ikh-3hXXZIwYtI

策略案例

[https://bigquant.com/experimentshare/86296263b27

更新时间:2024-05-16 06:36

基于卷积神经网络的多因子选股

https://bigquant.com/codesharev2/aae24fd2-15eb-4963-b009-5881e9e47912

\

更新时间:2024-05-15 10:35

策略研究


\

更新时间:2024-05-15 02:10

分页第1页第2页第3页第4页第5页
{link}