《因子选股系列研究之四十八》:Alpha与Smart Beta-东方证券-20181203
Smart Beta 产品近些年在海外市场规模增长迅速,它和主动量化、指数增强等alpha产品一样,收益来源于资产定价因子的风险溢价,不同之处在于获取因子暴露的方式,往往换手率较低。
我们把A股常用的指数增强策略用到了标普500指数上。用到的alpha因子中只有估值因子在标普500成分股内总体效果
由qxiao创建,最终由qxiao更新于
Smart Beta 产品近些年在海外市场规模增长迅速,它和主动量化、指数增强等alpha产品一样,收益来源于资产定价因子的风险溢价,不同之处在于获取因子暴露的方式,往往换手率较低。
我们把A股常用的指数增强策略用到了标普500指数上。用到的alpha因子中只有估值因子在标普500成分股内总体效果
由qxiao创建,最终由qxiao更新于
未来盈利能力越强的企业,内在价值越高,但预期内的盈利能力已经反应在价格中,不能带来超额收益,相反,预期外的盈利能力才是盈利能力alpha的真实来源。
**Nissim和Penman(2001)从ROE出发,将净利润和股东权益完全拆分成经营活动部分和金融活动部分,提出了RNOA(净经营资产收益率)的
由qxiao创建,最终由qxiao更新于
如果没有额外的信息或者大资金的强行介入、股票的日内交易特征应该处于较稳定状态,反之如果股票的日内价量特征很不稳定,那么该股票大概率有信息溢出或者被幕后大资金操控,而此时应该是考虑离场的时候了。
我们基于日内5分钟线计算了日内收益率的波动率、偏度、峰度和日内成交量的波动率、偏度、峰度和HHI指数共7
由qxiao创建,最终由qxiao更新于
风险模型有三个功能:控制风险暴露、估计收益率协方差矩阵、绩效归因。不是所有功能都要用到风险因子,估计协方差矩阵可以采用纯统计方法,报告把这个领域最新学术成果和业界常用的因子模型在A股进行了实证对比
由于股票数量多,收益率样本数量少,样本协方差矩阵的估计误差比较大,导致其矩阵条件数(最大特征值除以最
由qxiao创建,最终由qxiao更新于
量化策略回溯测试得到的“纸面收益”与实际交易“账面收益”最大差别在于交易成本控制,特别是对资金量大、换手率高的产品。在成交价格上加减一个固定比例的冲击成本的传统做法并不可行,它无法反应不同时点、不同股票、不同资金量造成冲击的差异。本报告基于A股主动买卖单数据,提供了一个可行的股票冲击成本模型,辅助投
由qxiao创建,最终由qxiao更新于
这篇报告我们主要检验了Harvey(2016)文章中统计的从2002年以后显著且独立的技术类因子共16个。检验发现16个中的大多数因子在A股市场表现不佳,但其中分别是DOWNILLIQ,UPILLIQ,NCSKEW,DUVOL和IVmonthly这5个因子表现较好,rankIC的绝对值均大于0.05
由qxiao创建,最终由qxiao更新于
研究结论
策略Alpha收益的定义取决于投资者控制了哪些风险,Alpha因子的ZSCORE可以通过多期横截面回归取平均的方式转化成预测收益率,输入后续的组合优化过程
在两个变量满足正态分布时,Pearson 和Spearman相关系数的数值很接近,但Spearman秩相关系数在做显著性检
由qxiao创建,最终由qxiao更新于
这篇报告主要从多个维度切入来研究业绩预告在传统的多因子框架下的应用。业绩预告比业绩快报和定期财务报告的公布时间更早,对推测上市公司业绩还是很重要的。从2012年开始,A股上市公司业绩预告的数量大幅的提升,且发布的预告的上市公司数量也达到了1500家左右,今年截至到6月底,已经有2600多家上市公司发
由qxiao创建,最终由qxiao更新于
本篇报告测试不同行业内大类因子的表现(2009.7-2018.11),并尝试对因子在不同行业表现差异的原因进行分析。比如市值因子在龙头变换率较高,小市值股票占比较高且规模集中度较低的行业中有更强的负向选股作用,也就是说在这些行业里小市值溢价更明显。比如BP因子在(无形资产+开发支出+商誉)比净资产较
由qxiao创建,最终由qxiao更新于
分析师研报数据是相对独立的信息源,本报告基于朝阳永续的盈利预测、评级和目标价等研报明细数据,研究分析师预期相关的属性,一致预期加总方法以及相应的alpha因子,供投资者参考
由于分析师选择性发布报告等原因,分析师覆盖多的股票未来表现更好,但因子使用时需要做风险中性处理。分析师预期分歧比较大的公司更
由qxiao创建,最终由qxiao更新于
对于大规模资金产品,30-50bp的冲击成本估算在某些市场环境下远远不够,我们上篇报告引入了Almgren(2005)的模型来估算冲击成本大小,并加入组合优化目标中,定量权衡组合alpha与冲击成本的利害关系
lmgren(2005)冲击模型采用的是幂函数非线性形式,导致数值求解组合优化问题耗时长
由qxiao创建,最终由qxiao更新于
传统用超额收益衡量事件效应大小的方法容易受行业和市值风格影响,错误的识别出一些“伪事件”,我们建议采用横截面回归方式剔除行业和市值影响计算事件导致的异常收益,再配合秩检验来识别能真正贡献alpha的事件
如果策略组合对各个风险因子的主动暴露控制为零,那么用中性化后的alpha因子预测残差收益和预测
由qxiao创建,最终由qxiao更新于
2016年,周期股崛起,市场风格发生明显切换,各类alpha因子的相对强弱态势也发生剧烈变化。我们认为周期股是否会持续强势有待讨论,但随着IPO增速、市场监管加强以及量化产品规模的扩张,传统偏小盘、偏技术的低资金容量alpha因子的效用会减弱,估值、盈利等基本面因子的作用会相对增强,市场日趋成熟。因
由qxiao创建,最终由qxiao更新于
去年底至今,得益于南下资金的注入,以及经济复苏的预期,恒生综指涨幅已超过10%,低估值、高股息的优质港股吸引了全球投资者前来配臵,随着沪港通、深港通的相继开放,港股与A股的关系日益紧密,两地投资者可以更加便捷地投资对方的股市,研究因子选股模型在港股的应用能产生直接的投资收益
我们分别在恒生综指和港
由qxiao创建,最终由qxiao更新于
银行的金融资产占比较大,运营模式独特,股票价格和其他行业指数相关性低,通过全市场测试选出的alpha因子可能在银行股内并不适用,有必要单独建模。而且银行股在沪深300和上证50指数里权重极高,做好银行行业内选股对指数增强效果的提升十分明显
长期来看,EP2TTM、BPTTM、NPL 、NPC、CC
由qxiao创建,最终由qxiao更新于
如果用因子打分分组后的多空组合收益衡量一个月收益反转因子的表现,我们发现反转因子在经历了2015年强势后,从2016.04开始衰弱,但多空组合收益整体保持为正,还未到失效阶段。不过如果把多空组合拆开,分别看多头组合和空头组合相对市场的超额收益,会发现空头组合一直持续跑输市场,而多头组合已经有一年时间
由qxiao创建,最终由qxiao更新于
抽象出了动态情景Alpha模型(DCAM)的一般框架,DCAM是传统的静态模型的层次化叠加,当只有一个情景且该情景只有一个情景区间时DCAM退化为静态模型
衡量一个情景因子好坏的主要标准就是这个情景下不同区间的alpha模型的差异化程度,即该情景下不同区间股票预期收益的影响因素及其重要性是否差异明
由qxiao创建,最终由qxiao更新于
ROE是价值投资者考察上市公司盈利能力的一个重要指标,在美国市场上有效性很强,但在A股基本没有选股效果,造成“A股不看公司盈利”的印象。但如果ROE的分子换成一年后的未来盈利,ROE的选股能力将显著提高,说明历史ROE选股无效的原因主要在于其对公司未来盈利的预测作用太弱,准确的盈利预测可以为投资者带
由qxiao创建,最终由qxiao更新于
风险模型的作用主要有三个:识别风险、估计股票收益率协方差矩阵和组合绩效分析。
如果只是估算协方差矩阵做组合优化,可以考虑用压缩估计量这样的统计方法。本报告提供的结构化因子模型,能在一套体系下实现三个功能,效果在理论上和实务上都比纯统计模型更佳
DFQ-2018风险模型包括29个行业风险因子(中信
由qxiao创建,最终由qxiao更新于
由于时间和精力的有限性,投资者更倾向于交易自己关注的股票,涨跌幅排行榜上的股票更容易进入投资者视野,由于做空约束,这类股票更倾向于被买入,导致股价高估,未来收益率较低。
以搜狗指数作为代理变量,我们发现股票单日涨跌幅和关注度存在明显的U型关系,只有涨幅或者跌幅特别靠前的股票才会有明显的关注度提升,
由qxiao创建,最终由qxiao更新于
尾部相关系数是指二维分布中尾部数据的相关系数。反映了两个资产在极端情况下同涨或同跌的可能性。尾部相关系数分为两种,上尾相关系数和下尾相关系数
我们基于copula方法来度量股票和市场之间的上下尾部相关系数,从结果看,上下尾部相关系数原始值和行业市值中性化后因子值在中证全指范围内均有着很强的选股效果
由qxiao创建,最终由qxiao更新于
绩效归因分析主要是将投资组合的业绩与基准业绩相比较,并将超越基准部分的收益分解成若干影响投资决策的因素。投资组合的绩效归因分析主要有两大类:基于收益率的绩效归因和基于组合持仓的绩效归
基于收益率的绩效归因主要有T-M 模型、H-M 模型、C-L模型、TM-FF3 、HM-FF3和CL-FF3模型。
由qxiao创建,最终由qxiao更新于
从2013年开始,券商股在沪深300成分股中的总权重就始终处在8%以上,最高的时候甚至能达到12%,对于指数有着不低的影响。此外,券商指数与其他行业指数走势的同步率较低,说明券商行业有其独特之处。因此,在构建沪深300增强组合的时候,若能对于券商、银行等权重占比较大的独特行业进行独立的分块建模,理论
由qxiao创建,最终由qxiao更新于
在某个时点上的股票的横截面市值基本上都可以被公司的财务指标和市场因素所解释,也就是说市值解释模型依据了市场上股票的情况,给出了每个公司当期投资者认为的内生市场价值,而解释模型的残差部分,也就是当前市值和内生市值的差,代表了不可解释的部分。残差值越大,代表公司当前的市值向上偏离内生市值越多,那么公司的
由qxiao创建,最终由qxiao更新于
因子选股研究通常采用月频调仓模式,但是Alpha因子的效用并非在未来一个月均匀分布,而是呈现逐步衰减的形态,也就是说我们从月初获得的alpha要比月末获得的alpha高,持仓一个月不动的调仓方式在当月后半段资金利用效率较低,有必要在alpha衰退之前调仓
子的alpha衰减速度可以用其IC的半衰期
由qxiao创建,最终由qxiao更新于