历史文档

【历史文档】策略-熟练掌握工作流

由clearyf创建,最终由small_q 被浏览 517 用户

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平台:

https://bigquant.com/data/home

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

新版表达式算子:

https://bigquant.com/wiki/doc/dai-sql-Rceb2JQBdS

新版因子平台:

https://bigquant.com/wiki/doc/bigalpha-EOVmVtJMS5

\

导语

如果你阅读了BigStudio前两篇文章,相信已经对BigStudio有一定的了解,今天我们聊聊BigStudio上默认可视化AI实验的的工作流。

什么是工作流

简而言之就是实验在BigStudio上的工作流程。BigStudio是一个开发AI量化交易策略的平台,因此了解实验在BigStudio上的的工作流,能够帮助大家从整体宏观上理解AI量化策略。

什么是AI量化交易策略

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此AI量化交易策略可以简单理解为将机器学习应用在量化投资领域。

机器学习流程

机器学习(Machine Learning, ML)可以认为是:通过数据、算法使得机器从大量历史数据中学习规律,从而对新样本做分类或者预测。它是人工智能(Artificial Intelligence, AI)的核心,,其应用遍及人工智能的各个领域,主要使用归纳、综合的方法获取或总结知识。更多内容请参看:什么是机器学习?

{w:100}

AI量化策略流程

AI量化策略本质上符合机器学习流程示意图,最为重要的两个模块即为训练和预测。训练是使用训练集数据拟合出一个模型,预测是使用该模型在评估集数据,获取预测结果。想要更多地了解AI量化策略,可以点击AI量化策略的初步理解BigQuant AI策略详解

{w:100}{w:100}

BigStudio实验工作流

认识了机器学习流程和AI量化策略流程,能够对BigStudio实验工作流能更好地理解,BigStudio实验是AI量化策略在BigStudio上的可视化展示。如下:

{w:100}{w:100}在画布上,AI量化策略是由数据+模块共同组建形成的。乍一看去,实验工作流比较复杂,这里将其进行拆解和说明。

{w:100}{w:100}从上图可以看出,BigStudio实验主要包括数据标注、特征抽取、模型训练、模型预测、回测交易这几块,我们再结合前边介绍的AI量化策略流程,就可以很清楚地了解BigStudio上可视化实验的工作流,这有助于帮助大家更好更快地开发AI量化策略,实现实验的快速迭代。

知道了BigStudio实验的工作流,我们在下一篇文章会详细介绍每个小模块的具体使用。


\

标签

风险控制数据分析
{link}