寻找市场中的Alpha

导语

本文旨在向读者介绍Alpha的相关基本概念,以及寻找和检验Alpha的主要流程和方法。在上篇中我们梳理了 WorldQuant经典读本FindingAlphas的概要以及WebSim的使用,在下篇中我们会介绍相关方法在BigQuant平台上的实现。

初识Alpha

由iquant创建,最终由qxiao更新于

利用希尔伯特变换择时

导语

  • Hilbert变换是一种有效的数据周期分析工具,将原始信号延迟90°相位,从而方便的提取出当前信号在周期变换中所处的相位,进而对趋势进行判断。
  • 对于股票数据的走势有一种假设,走势可以分解为:长期趋势+中短期周期性波动+噪声数据。在去除长期趋势的情况下,可以利用Hilbert变换

由iquant创建,最终由qxiao更新于

1.0环境里的StockRanker模型如何迁移到3.0环境

介绍

本策略旨在将1.0版本中训练好的StockRanker模型参数直接传入到3.0环境下进行调用。

主要包括以下步骤:

  • 进入1.0环境下训练模型,将训练好的模型导出
  • 进入3.0环境下读出导入数据

具体实现

导出训练数据

打开1.0环境中的“新手学习模板”,运

由iquant创建,最终由iquant更新于

机器学习应用于底部反转策略的表现

策略简介

A股表现整体呈现震荡趋势,熊市周期长,且经常出现虽然指数跌幅较低,但市场上的个股跌幅较大。于是提出猜想:是否能找到比较抗跌的策略,在市场表现一般的时候策略回测较小。

策略的特点:在大盘下跌时,策略相对大盘比较抗跌,策略回撤相对小。

构建步骤

确定策略目标市场

由iquant创建,最终由iquant更新于

因子构建与标注——自定义标注

导语

本文标题为自定义标注,其实就是想告诉大家如何灵活地对数据进行标注,从而得到预测能力更强的机器学习算法。

认识分类和回归

谈标注一词之前,我们先简单了解机器学习算法中的分类和回归。

分类问题是监督学习的一个核心问题。在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分

由iquant创建,最终由iquant更新于

“漂亮50”策略尝试_v1_new

策略介绍

A股分两种:“漂亮50”和“要命3000” http://stock.qq.com/a/20170428/006821.htm 证券时报记者以三个指标筛选出A股的“漂亮50”,这三个指标分别是净利润增长率长大于15%,连续3年净资产收益率大于15%,市盈率低于35。

由qxiao创建,最终由qxiao更新于

根据财务数据生成目标因子

这是旧版的例子, 只能在2.0.0的Aistudio中运行

策略案例

[https://bigquant.com/experimentshare/54fe864132a7447894540d70cd2e36e5](https://bigquant.com/experimentshare/

由ypyu创建,最终由bq7zuymm更新于

基本面量化

导语

公司的基本面因素一直具备滞后性,令基本面的量化出现巨大困难。而从上市公司的基本面因素来看,一般只有每个季度的公布期才会有财务指标的更新,而这种财务指标的滞后性对股票表现是否有影响呢?如何去规避基本面滞后产生的风险呢?下面我们将重点介绍量化交易在公司基本面分析上的应用,即平时常说的 **

由iquant创建,最终由iquant更新于

美股A股相关性初探

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com

由ypyu创建,最终由qxiao更新于

等资金权重配置

  1. 新建策略模板
  2. 查看回测/模拟模块属性栏中的“初始化函数”框体内的代码,将其中的:

每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..] context.stock_weights = T.norm(

由qxiao创建,最终由qxiao更新于

价值选股策略

价值选股策略的交易规则

每隔30个交易日,以开盘价买入当日0<PB<1.5且0<PE<15且有成交量的股票; 每隔30个交易日,将不符合上述标准的持仓股票在第二天以收盘价卖出。

策略构建步骤

  1. 确定股票池和回测时间

    通过证券代码列表输入要回测的单只/多只股票,以及回测

由qxiao创建,最终由qxiao更新于

固定止盈止损功能

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com

由crisvalentine创建,最终由qxiao更新于

大跌行情下的量化策略 (副本)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com

由matrixreloaded创建,最终由iquant更新于

高年化收益-主力资金AI策略模型分享 (副本)


本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

\

更新

本文为旧版实现,仅供学习参考。

[https://bigquant.com/wiki/doc/demos-ecdRvuM1TU](https://bigquant.com/wiki/doc/d

由w17744520135创建,最终由qxiao更新于

【教学贴】市值行业中性化到底是什么?

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

[https://bigquant.com/wiki/doc/demos-ecdRvuM1TU](https://bigquant.com/wiki/doc/dem

由anthony_wan创建,最终由qxiao更新于

Deep Alpha - CNN模型

1、同时期对比结果显示:7层的卷积神经网络表现好于2层,能够学习到更多的市场特征。 2、相比Deep Alpha-DNN基准模型,CNN在业绩表现上略弱于DNN,但差异极小。CNN模型稳定性表现不强,调整参数后效果差异极大,结果很难复现,这可能源于此模型设计时比DNN模型深4层。 3、本模型设置了6

由qxiao创建,最终由small_q更新于

强化学习在金融市场中的应用(上)

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

[https://bigquant.com/wiki/doc/demos-ecdRvuM1TU](https://bigquant.com/wiki/doc/dem

由ypyu创建,最终由qxiao更新于

【327%收益策略源码分享 (副本)

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

[https://bigquant.com/wiki/doc/demos-ecdRvuM1TU](https://bigquant.com/wiki/doc/dem

由luis112创建,最终由qxiao更新于

日内分时成交的秘诀-海通证券

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com

由aqtank创建,最终由iquant更新于

分页:第1页第2页第3页第4页第15页
{link}