LSTM

长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),在金融领域具有广泛的应用。LSTM的独特之处在于其能够捕捉并记住时间序列数据中的长期依赖关系,这在分析金融市场的动态性和预测未来趋势时尤为关键。在处理如股票价格、汇率或市场指数等金融数据时,LSTM能有效地利用过去的信息,结合当前的输入,以生成对未来状态的准确预测。这使得LSTM在算法交易、风险管理、资产定价等金融应用中成为一个强有力的工具。总体来看,LSTM在金融中提供了一种基于深度学习的有效方法,帮助理解和预测市场的复杂行为。

机器学习:17-LSTM

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/56e64ce1-43c8-4317-90d4-5df0a427a966](https://bigquant.com/codeshare/56e64ce1-43c8-4317-90d4-5df0

更新时间:2024-04-25 07:41

基于LSTM模型的智能选股策略

导语

这是本系列专题研究的第五篇:基于长短期记忆网络LSTM的深度学习因子选股模型。LSTM作为改进的RNN(循环神经网络),是一种非常成熟的能够处理变化的序列数据的神经网络。此算法在keras, tensorflow上都有可以直接调用的api,在BigQuant平台中也有封装好的可视化模块。本文首先大致介绍了RNN和LSTM的原理,然后以一个可视化实例展示LSTM模型在因子选股方面的应用。


LSTM原理介绍

更新时间:2023-11-26 16:58

深度学习前沿 | 利用GAN预测股价走势

导语

本文是对于medium上Boris博主的一篇文章的学习笔记,这篇文章中利用了生成对抗性网络(GAN)预测股票价格的变动,其中长短期记忆网络LSTM是生成器,卷积神经网络CNN是鉴别器,使用贝叶斯优化(以及高斯过程)和深度强化学习(DRL)优化模型中超参数。此外,文章中非常完整地实现了从特征抽取、模型建立、参数优化、实现预测的过程,其中运用了多种机器学习方法,比如BERT进行文本情绪分析、傅里叶变换提取总体趋势、autoencoder识别高级特征、XGboost实现特征重要性排序等。本文学习的思路是:GAN算法概览 – 项目思路 – 项目详解。拟在学习完成后,在Bigquant平台

更新时间:2023-11-26 16:58

LSTM 能否通过历史股价预测未来股价?

LSTM 的闹剧

随着深度网络的越来越普及,软件开发人员越来越容易对其进行实现,毫无疑问,很多开发人员会用他们熟悉的基于股票价格的预测来训练长短期记忆网络。我见过好几篇论文,展示了如何通过把历史资产价格用于LSTMs训练然后得出“完美地符合”现实的结果。

我相信你也曾怀疑过这些说法都只是一场闹剧。我们都知道,即使你做得再好,也无法准确地预测到市场的90%-100%,即便你进行相当精确地定义。股票市场正如它反映的社会经济一样不断变化,我们暂时还不能做到完美预测。

我所看到的的是,这些作者采用了一些以前的资产价格,有时会对那些价格进行“准确的转换”(即记录日志、规范逻辑、换算价格、或者

更新时间:2023-11-26 16:58

基于LSTM的股票价格预测模型

导语

本文介绍了LSTM的相关内容和在股票价格预测上的应用。


LSTM的股票价格预测

LSTM(Long Short Term Memory)是一种 特殊的RNN类型,同其他的RNNs相比可以更加方便地学习长期依赖关系,因此有很多人试图将其应用于 时间序列的预测问题 上。

汇丰银行全球资产管理开发副总裁Jakob Aungiers在他的个人网站上比较详细地介绍了LSTM在Time Series Prediction上的运用([http://www.jakob-aungiers.com/articles/a/LSTM-Neural-Network-

更新时间:2023-11-26 16:58

LSTM模拟运行出错

ValueError Traceback (most recent call last) <ipython-input-1-652f482ac31d> in <module> 251 ) 252 --> 253 m36 = M.filter_delist_stock.v6( 254 input_1=m25.data 255 )

/var/app/enabled/biglearning/module2/common/modulemanagerv2.cpython-38-x86_64-linux-gnu.so in bigl

更新时间:2023-10-09 08:11

CNN-LSTM的连接原理?

如题:CNN模块中的卷积层和LSTM模块在可视化工作界面通过连线连接,他们之间是通过什么原理进行融合和连接的呢?

希望得到平台工程师的解答,谢谢!

更新时间:2023-10-09 07:07

我在改LSTM+CNN代码时,运行不成功

求助平台策略工程师

我在改LSTM+CNN代码时,把输入特征改为15维时,运行不成功

策略地址为:https://bigquant.com/codeshare/8b2a7e00-18b2-4fd4-8777-6875307dae1e

\

更新时间:2023-10-09 03:22

为什么根据LSTM+CNN深度学习预测股价案例没有成交?

根据【模板策略】LSTM+CNN深度学习预测股价案例没有成交?

https://bigquant.com/wiki/doc/shendu-gujia-4teFqoC7MV

https://bigquant.com/community/t/topic/194980

https://bigquant.com/experimentshare/52d3c0772a2d4ef9bb5950c7c6646170

\

更新时间:2023-10-09 03:16

模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理、分类及应用

Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism。Attention Mechanism目前非常流行,广泛应用于机器翻译、语音识别、图像标注(Image Caption)等很多领域,之所以它这么受欢迎,是因为Attention给模型赋予了区分辨别的能力,例如,在机器翻译、语音识别应用中,为句子中的每个词赋予不同的权重,使神经网络模型的学习变得更加灵活(soft),同时Attention本身可以做为一种对齐关系,解释翻译输入/输出句子之间的对齐关系,解释模型到

更新时间:2023-06-14 03:02

LSTM的时序应用

RNN与LSTM

在上一讲中,我们简单介绍了RNN的思想。RNN是一种使用类似链表的形式、具有一定记忆能力的网络模型。对于具有序列性的样本数据,记住过去的信息对预测当前状态是非常必要的。相比于一般的神经网络的组成,RNN会额外增加一个T-1时刻隐含层到T时刻隐含层的传播矩阵。

RNN中的隐含层可以想象为我们的记忆,在当前作决定的时候我们会考虑记忆中过去的情况,这就是所谓的利用经验判断;而老的记忆会随时间的流失会被不断遗忘,因此在做当前判断时不会用到时间间隔很长的记忆。

然而不幸的是,当记忆的间隔时间需要很长的时候,训练 RNN 变得非常困难,其根本原因在于训练的时候会出现梯度消失

更新时间:2023-06-14 03:02

RNN以及LSTM的介绍和公式梳理

前言

最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RNN以及LSTM的算法流程并推导一遍应该是没有问题的。

RNN最近做出了很多非常漂亮的成果,比如Alex Graves的手写文字生成、名声大振的『根据图片生成描述文字』、输出类似训练语料的文字等应用,都让人感到非常神奇。这里就不细说这些应用了,我其实也没看过他们的paper,就知道用到了RNN和LSTM而已O(∩_∩)O

RNN(Recurrent Neural Network)

![image|690x351](/community/uploads

更新时间:2023-06-14 03:02

华西证券机器学习择时系列之三:LSTM模型市场择时策略 2021/09/09

摘要

量化择时交易策略

机器学习量化交易策略的制定,是通过从海量历史数据中,利用计算机强大的处理能力,挖掘并分析出那些能够为投资者带来收益的各种大概率可行的投资方式来实现的。通过数学模型对这些策略进行分析并加以验证,以期望让投资者获得更高更稳定的收益,或更合理地规避风险。

长短期记忆模型具有明显优势

长短期记忆模型通过记忆单元有效地学习长期依赖关系,在金融市场预测中具有明显优势长短期记忆网络是人工神经网络的一种,具有负责计算时间序列中各个观测值之间依赖性的能力,同时具有快速适应趋势中急剧变化的固有能力。所以,长短期记忆模型可以在波动的时间序列中很好地工作。在处理股

更新时间:2023-06-13 06:53

DeepAlpha短周期因子研究系列之:LSTM在量化选股中的应用

一、引言

DeepAlpha系列模型中,我们发现DNN全连接神经网络模型可以从基础的量价数据中有效提取出有效的选股能力。同时,股票的量价数据属于金融时序数据,对应的,在深度学习模型中LSTM具有较强的时序预测能力,因此我们将LSTM模型应用于量化选股模型,并分析和验证其效果。

二、LSTM长短期记忆神经网络

2.1 RNN循环神经网络

循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络,相比一般的神经网络来说,RNN将状态在自身网络中循环传递,因此可以接受更广泛的时间序列数据。

基础的RNN结构如下图所示:

![

更新时间:2023-06-07 08:34

因子模型系列:利用LSTM算法估计基金因子暴露度-招商证券

摘要

见贤思齐焉。当我们在研究为什么有些基金表现优异的时候,我们总想知道这些目标基金到底在哪些因子上有所暴露,对目标基金因子暴露的研究有利于投 资者构建自己的投资组合。传统方法是根据公募基金的定期报告中的持仓数据来 计算基金在某些因子上的暴露度,但是由于定期报告发布时间存在较长滞后,这 种传统方法在实际使用中也存在较长时滞。我们尝试使用基金净值序列和因子收 益序列来反推基金在某因子上的暴露度走势。使用 LSTM 算法进行计算,经过一 系列测试,取得了一些初步成果。

对于基金在各因子上的暴露度迁移的研究,有利于我们对目标基金进行研究。 不管是对基金进行因子业绩归因还是波动率拆解,都需要

更新时间:2023-06-01 14:28

LSTM/CNN层运行提示Physical devices cannot be modified after being initialized

问题

<ERROR: moduleinvoker: module name: dl_layer_lstm, module version: v1, trackeback: RuntimeError: Physical devices cannot be modified after being initialized>

请问是什么原因?配置了一块GPU,重启了开发环境也不行,一直提示这个错误

[https://bigquant.com/experimentshare/ad9ddc0550d64dfa933ceaaf28f61e21](https://bigquant.com/exp

更新时间:2023-06-01 02:13

LSTM策略报错

https://bigquant.com/experimentshare/22f353e77e7c462b99eb32df8f3adc4d

我尝试着在这个策略里做一下自己的调整,但是报错了,想知道原因是什么呢?希望能很快得到帮助!

更新时间:2023-06-01 02:13

lstm股票策略模板出现‘np_epoch'错误

问题

lstm股票策略模板出现‘np_epoch'错误

问题截图

{w:100}

更新时间:2023-06-01 02:13

LSTM数据过滤问题

问题

问题描述

下面的LSTM策略中,数据过滤后造成参与训练的部分数据被过滤掉,在序列窗口滚动时造成窗口中数据顺延错乱。请问能否帮修改下面的策略,实现被过滤掉的数据也参与训练和回测(比如close_*1和close_*2被过滤掉,但能参与close_0,close_1,close_2这个序列窗口的训练)?

在(序列窗口滚动)之后过滤,数值已经标准化了,能否过滤? 能发个例子吗

另外,还有个问题,能在(序列窗口滚动)之后,再做标准化吗?

问题策略

[https://bigquant.com/experimentshare/83552c544786

更新时间:2023-06-01 02:13

LSTM策略如何加入自己上传文件中的数据

https://bigquant.com/experimentshare/2a2a7c6e7729445e956b549bc9b909a2

我把自己上传的文件作为数据源,想将其中的数据作为一个特征,应该如何加入到这个策略中呢?

更新时间:2023-06-01 02:13

基于Transformer模型的智能选股策略

导语

RNN、LSTM和GRU网络已在序列模型、语言模型、机器翻译等应用中取得不错的效果。循环结构(recurrent)的语言模型和编码器-解码器体系结构取得了不错的进展。

但是,RNN固有的顺序属性阻碍了训练样本间的并行化,对于长序列,内存限制将阻碍对训练样本的批量处理。这样,一是使得RNN的训练时间会相对比较长,对其的优化方法也比较少,二是对于长时间记忆来说,其的效果也大打折扣。

而Transformer的核心,注意力机制(Attention)允许对输入输出序列的依赖项进行建模,而无需考虑它们在序列中的距离,这样对上面两个RNN中比较突出的问题就有了一个比较好的解决办法。本文将

更新时间:2023-04-10 15:02

用LSTM神经网络模型训练期货高频数据

高频交易经常被提起,却始终蒙着一层神秘面纱,仿佛那只是金字塔尖那一小撮人的玩物。今天我们就从期货高频数据下手,去揭开神秘面纱的一角,并尝试搭建神经网络模型对高频数据进行预测,抛砖引玉,希望能让对金融数据分析,量化交易,人工智能感兴趣的朋友有所收获。我们已经将本文的全部源数据+源代码+python环境打包好,做到开箱即用, 文末有获取方式,欢迎大家下载自己动手继续学习和研究。

先看我们最终的模型结果,在训练集和测试集上的表现:

下面开始探索数据。

交易时间

以本文要研究的螺纹钢(RB)为例, 与股票不同,期货不仅在工作日白天交易,很多品种还有夜盘, 每个交易日就是从夜盘开始计算的。

更新时间:2023-04-10 09:17

lstm+cnn+A股去ST+大盘风控

https://bigquant.com/experimentshare/fd57479b26814f88ba0ab5eb91368e03

\

更新时间:2023-03-10 00:23

卷积2D+LSTM,shape大小设置错误

策略使用的 卷积2D+LSTM

提示:shape大小设置错误,摸索了一天,没有发现问题所在

策略:

https://bigquant.com/experimentshare/a3477d1ea1774470bce74969f937905a


\

更新时间:2022-11-25 08:36

LSTM Networks应用于股票市场探究

摘要

BigQuant平台上的StockRanker算法在选股方面有不俗的表现,模型在15、16年的回测收益率也很高(使用默认因子收益率就达到170%左右)。然而,StockRanker在股灾时期回撤很大(使用默认因子回撤55%),因此需要择时模型,控制StockRanker在大盘走势不好时的仓位。 LSTM(长短期记忆神经网络)是一种善于处理和预测时间序列相关数据的RNN。

更新时间:2022-11-12 07:19

分页第1页第2页