本篇是“学海拾珠”系列第三十九篇。作者通过实证得出结论:用直接现金流的计量方法可以比一般的计量方法更好地预测股票收益率,而间接现金流的计量方法又往往优于基于毛利润、营业利润或净利润的各种利润表盈利能力的计量方法。
回到A股市场,行业研究员对企业进行估值的步骤和本文的直接现金流法较为类似,从营业收入端开始“抽丝剥茧”最终计算得到自由现金流,再以合理的假设对企业进行估值。从量化研究的角度,如何依据行业和风格特性更精准地对不同类型的企业依据不同的假设来推算得到自由现金流,以更“纯粹”的现金流指标构建因子有助于提高因子表现。
更新时间:2022-10-20 05:59
本篇是“学海拾珠”系列的第十七篇。作者通过建立一个包含企业、扩张期权和收缩期权的动态模型,揭示了企业规模灵活性和经营杠杆对股票收益的影响。
实物期权是公司投资的一种形式
实物期权这个概念源于摩西·鲁曼发表在哈佛商业评论上的两篇文章,是公司投资的一种形式。例如土地使用权,如果企业不购买这一资产,其便失去了未来使用土地进行开发,即行权的可能性,由于购买土地使用权这一行为会增加公司资产,所以又属于扩张期权,相反则属于收缩期权。扩张期权相当于用无风险的现金购买具有风险的资产,会增加企业经营风险,收缩期权相反,当经营状况恶化或改善
更新时间:2022-10-20 05:54
本篇是“学海拾珠”系列第七十一篇,本期推荐的海外文献研究了员工流动和股票回报之间的关系。普通员工正日益成为许多公司关键的生产要素,这些变化表明企业劳动力的动态变化对企业绩效具有重要影响。然而,我们关于员工的进入和退出对公司股价的影响知之甚少。如果投资者认为劳动力流动所传达的信息已被其他数据源充分涵盖,则他们在对证券进行估值时可能会忽略这些动态。回到A股市场,关于员工流动信息和股票收益之间关系的研究非常罕见,作为较为另类的数据,无论是作为因子还是事件加入选股模型中都能提供一定的增量。
更新时间:2022-10-12 12:08
主要观点
本篇是“学海拾珠”系列第五十九篇,本期推荐的海外文献研究使用企业的现金流特征来判断公司所处哪个生命周期。现金流特征分类法计算简便,且不受分布假设的影响,研究表明基于现金流特征分类下的生命周期对公司未来盈利和股票收益均有一定的预测能力。
回到A股市场,研究企业的生命周期是一个较为崭新的视角,可以比较现金流特征法和财务指标法(资本支出、股息支付率、年龄和营收增长率)的分类结果的合理性,用股票收益和盈利增速对两种分类结果进行评判。此外,我们也可以检验PB-ROE策略、超预期类策略、投机类策略在不同生命周期的公司域中的选股效果,**一方面
更新时间:2022-10-09 10:29
宏观数据多被应用于资产配臵与行业轮动,本篇报告尝试在微观的选股层面进行探索,以期为投资者提供参考。
如何刻画股票与宏观经济指标之间的联系。本文首先探讨宏观经济如何影响股票的收益,并尝试使用宏观敏感性(MacroBeta)刻画股票与宏观经济指标之间的联系。
宏观数据的潜在问题与数据清洗。宏观经济数据相较其他常见数据,面临的问题更多,包括公布时间滞后、数据发布频率不稳定、缺失值多、序列不平稳等。实际使用时,我们推荐通过差分法、Surprise替代法、资产组合模拟法等方式进行预加工处理。
宏观敏感性因子是否可以用来选股?我们将宏观敏感性——MacroBeta当作选股因子,测试其本
更新时间:2022-09-01 13:47
下滑轨道内部应该如何配置
本篇报告介绍了目标日期基金中下滑轨道内部的细分资产应该如何配置,特别的,本文的模型将投资者退休后的支出视作负债,并将其纳入到细分资产配置模型中。退休负债会影响投资者整个生命周期的资产配置策略,导致股票内部和债券内部的细分资产配置不断随时间变化。与纯资产优化模型相比,负债相关的优化模型更全面地考虑了投资者的总体财务状况。在整个生命周期中,随着人力资本的通胀保护功能逐渐下降,实际收益类资产如TIPS、商品和房地产等,将会发挥越来越大的作用。
工业用电量与股票收益率
以工业用电增长率预测未来一年美国股市超额收益
![{w:100}
更新时间:2022-08-31 08:55
如何度量信息风险
本文根据上市公司盈余公告前和非盈余公告时期特质波动率之差,来构建异常特质波动率AIV指标,该指标用于衡量上市公司的信息风险。
AIV与信息风险
我们检验了AIV与盈余公告前的收益抢跑现象之间的关系,发现AIV值越高的股票其盈余公告前的收益越高。
进一步地,我们考察了AIV与内幕交易者的异常行为、卖空交易者的异常行为和机构交易者的异常行为之间的关系发现,AIV值越高的股票,其盈余公告前将会有更加异常的内幕交易、卖空交易和机构交易。
AIV因子溢价
从分组检验法可以看到,AIV与股票的未来收益之间呈现出显著的正相关关系
更新时间:2022-08-31 08:48
文献来源:Hirshleifer D, Jiang D, DiGiovanni Y M. Mood beta and seasonalities in stock returns[J]. Journal of Financial Economics, 2020.
推荐原因:现有的研究表明股票收益存在横截面的季节性,即部分股票在同样的日历月或工作日会周期性地表现更好。我们认为资产对投资者心情(Investor Mood)的敏感性差异,解释了这些季节性现象。个股收益的相对差异会在相同的情绪时期内出现重复,而在不同情绪时期内出现反转。例如,对于在过去投资者情绪上升时期表现
更新时间:2022-08-31 08:36
自2018年以来,大小盘风格的波动极为剧烈。因此,预判大小盘风格对于获取稳健的投资业绩显得尤为重要。前期研究成果表明,利率水平的变化与市场波动率是两类较为有效的大小盘风格先行指标。因此,本文基于上述两类指标构建了量化模型,预测未来1个月大盘强于小盘的概率,从而辅助大小盘风格轮动。
2018年以来模型预测得到的大盘概率持续回落,短期内小盘风格更优。为了兑现这一判断,需要选择合适的能够代表小盘风格的指数。在实际操作中,我们推荐投资者从多个角度对于备选指数进行分析,并以创业板50指数为例进行了简要讨论。
短期限利率水平变化和市场波动率对于短期大小盘风格具有明显的预测效果。使用2
更新时间:2022-08-30 10:45
在本篇中,我们借鉴统计套利的思想,提出了价差偏离度的概念,试图捕捉股票相对其同类型股票的高估低估程度。价差偏离度因子本质上是一个相对意义上的反转因子,价差偏离度低,近期跑输其同类股票,股票相对处于低位,有向上回复的动力,有正的预期超额收益,价差偏离度越高,股票处于相对高位,后期有回调的压力。
价差偏离度因子业绩表现优异,过去10年月度RankIC-0.095,IR-0.85,分组的top组合相对市场等权年化超额收益17.8%,而且,其稳定性也较高,IC正显著比例9.8%,负显著比例69.9%,多空组合月胜率76.4%,最大回撤15.16%。
价差偏离度和传统的市值
更新时间:2022-08-30 09:49
由于市场体制、投资者结构、投资者教育等多方面的原因A股市场投机性较强,既然不能改变A股投机的事实,我们不妨研究如何在投机市场中获利。
我们将个股被投机的过程划分为4个周期,投机程度增强的周期一般伴随着股价的上涨,过度投机后投机程度减弱的周期一般伴随着股价的回落,因此,买入投机程度弱的股票卖出过度投机的股票即可获取超额收益。
股票的投机程度虽然不能被直接观测,但投机程度高的股票往往伴随着一定的交易行为特征,通过对这些交易行为特征的刻画可变相考察个股的投机程度。
我们通过特征波动率、特异度、价格时滞、市值调整换手分别度量股票的波动率高低、个股收益能否被市场风格解释、
更新时间:2022-08-30 02:02
本文提出劳动报酬比例是一个影响横截面预期收益差异的重要因素。人工费用的相对大小及刚性决定了经营杠杆的形式,本文将其称为劳动杠杆。 我们推导了劳动杠杆存在的条件,该模型为使用公司劳动报酬比例衡量劳动杠杆提供了理论支撑。本文定义了三个衡量劳动报酬比例的指标,每个指标都是劳动成本代理变量与增加值代理变量的比值。实证研究表明,劳动报酬比例高的公司,其营业利润对经济冲击更加敏感,并且,公司的预期收益更高。
[/wiki/static/upload/eb/eb71314c-565e-4052-8595-f91ba6ad9cb1.pdf](/
更新时间:2022-07-27 10:22
本篇是“学海拾珠”系列第二十一篇。作者通过建立资产集群性指标和相对价值指标来对交易泡沫进行识别,并应用于行业轮动和因子择时两个领域中。
拥挤交易指的是大量具有类似特征的资金共同购买或出售某一或某一类资产的现象,这通常会造成资产价格大幅度波动。然而,并非所有的资产价格大幅波动都由拥挤交易引起,如果企业的基本面价值出现变化,则不需要拥挤交易,资产价格也会发生大幅波动。
拥挤交易通常会引发泡沫,即资产价格并非由基本面价值发生变化而出现大
更新时间:2021-12-16 06:04
本篇是“学海拾珠”系列第二篇,摘选自论文《Stock Return Asymmetry: Beyond Skewness》的核心结论。股票收益分布的偏度和股票预期回报率之间的关系是市场广泛关注的话题。有研究指出,高偏度往往与低预期回报率有关,两者之间呈负相关性;但也有人在研究中发现了偏度和预期回报率的正相关性。学界对于两者之间的关系尚无定论。
本篇报告提出了两种新的度量股票收益不对称性的方法。与流行的偏度度量法不同,本文度量基于数据的分布函数,而不仅仅是三阶中心矩偏度。通过实证,用这种新的度量法检测出的股票收益高上行不对称性往往意味着未来的低回报率。其中,第一种方法是计算收
更新时间:2021-11-25 10:05
随着传统因子研究的深入,通过使用日级别数据已经很难发现能够在传统技术选股因子之外提供额外选股能力的因子了。考虑到传统因子多使用日级别数据刻画股票日间的形态特征,通过引入日内高频数据刻画股票日内的特征也许能够为模型带来新的信息以及Alpha。
这一观点也在本系列前一篇研究(《选股因子系列研究十八——价格形态因子》)中有所印证。本报告主要使用了股票1分钟价格数据构建了相关因子,对于股票高频收益分布特征(方差、偏度以及峰度)进行了刻画。
报告主要分为三部分,第一部分讨论了因子的构建以及计算方式。第二部分从单因子的角度对于因子的选股能力进行了分析。第三部分对比分析了加入高频因子的改进模型以及未加入
更新时间:2021-11-22 08:33
由于市场体制、投资者结构、投资者教育等多方面的原因A股市场投机性较强,既然不能改变A股投机的事实,我们不妨研究如何在投机市场中获利。我们将个股被投机的过程划分为4个周期,投机程度增强的周期一般伴随着股价的上涨,过度投机后投机程度减弱的周期一般伴随着股价的回落,因此,买入投机程度弱的股票卖出过度投机的股票即可获取超额收益
股票的投机程度虽然不能被直接观测,但投机程度高的股票往往伴随着一定的交易行为特征,通过对这些交易行为特征的刻画可变相考察个股的投机程度。我们通过特征波动率、特异度、价格时滞、市值调整换手分别度量股票的波动率高低、个股收益能否被市场风格解释、股价能否反应市场公共信息(市场指数)
更新时间:2021-11-22 07:53
如果没有额外的信息或者大资金的强行介入、股票的日内交易特征应该处于较稳定状态,反之如果股票的日内价量特征很不稳定,那么该股票大概率有信息溢出或者被幕后大资金操控,而此时应该是考虑离场的时候了。
我们基于日内5分钟线计算了日内收益率的波动率、偏度、峰度和日内成交量的波动率、偏度、峰度和HHI指数共7个日内交易特征,考虑到时间序列自相关性,我们采用Newey-West调整标准差度量日内交易特征的稳定性(SDRVOL,SDRSKEW,SDRKURT,SDVVOL,SDVSKEW,SDVKURT和SDVHHI)。
7个日内交易特征稳定性因子在各个样本空间均展现出日内交易特征稳定性越差的股票未来平均
更新时间:2021-11-22 07:53
随着技术的进步和竞争的加剧,越来越多的投资已经开始关注日内高频数据,高频数据一般指分笔数据(Tick)、快照数据(Quote)以及衍生出来的分钟数据、资金流量数据等,本文涉及主要是日内5分钟行情数据
本文主要想考察股票的日内价格行为特征和股票未来收益率之间关系,度量股票日内价格行为特征最简单的方法是计算日内收益率的高阶矩(波动率、偏度、峰度),考虑到股票的收益率受市场、市值等风格的影响,我们在计算高阶矩时收益率用Fama-French回归的残差替代,分别计算日内特质波动率、日内特质偏度、日内特质峰度三个指标,以20日均值作为月度指标
通过分析各因子的Rank IC序列和分组的业绩表现,我们
更新时间:2021-11-22 07:53
在本篇中,我们借鉴统计套利的思想,提出了价差偏离度的概念,试图捕捉股票相对其同类型股票的高估低估程度。价差偏离度因子本质上是一个相对意义上的反转因子,价差偏离度低,近期跑输其同类股票,股票相对处于低位,有向上回复的动力,有正的预期超额收益,价差偏离度越高,股票处于相对高位,后期有回调的压力
价差偏离度因子业绩表现优异,过去10年月度RankIC-0.095,IR-0.85,分组的top组合相对市场等权年化超额收益17.8%,而且,其稳定性也较高,IC正显著比例9.8%,负显著比例69.9%,多空组合月胜率76.4%,最大回撤15.16%
价差偏离度和传统的市值因子、估值因子相关性弱,通过因
更新时间:2021-11-22 07:53