模型训练

从金融角度看,模型训练是利用历史数据,通过特定算法构建并优化数学模型的过程。其目的是揭示隐藏在海量数据中的规律,并预测未来趋势。在金融风险评估、投资策略制定、市场预测等核心领域,模型训练发挥着至关重要的作用。它能够将复杂的金融现象转化为可量化、可操作的数学表达,帮助决策者规避风险,发现价值投资机会,以及把握市场动态。随着数据量和计算能力的不断提升,模型训练在金融领域的应用将越来越广泛,成为推动金融行业创新和发展的重要驱动力。

TensorFlow系列



\

更新时间:2023-06-14 03:02

支持向量机

在本文中,我将介绍机器学习中关于传统机器学习中几乎最为强大的方法——支持向量机。

因为知乎中对于markdown的支持太差了,本文不在知乎直接排版,所以阅读体验不是很好,若想获得更好的阅读体验,请点击下文链接进行阅读。

[支持向量机​chrer.com 图标](https://link.zhihu.com/?target=http%3A//chrer.com/2018/08/04/%25E6%259

更新时间:2023-06-14 03:02

深度学习系列


\

更新时间:2023-06-14 03:02

因子库的因子怎样使用?

怎样使用因子库里的因子作为特征?

{w:100}

这个因子id没法直接使用,

{w:100}只能复制因子的表达式使用吗?

{w:100}

更新时间:2023-06-01 14:26

短周期因子特征重要性为0

问题

{w:100}{w:100}

是其他因子干扰了结果吗?

解答

这个图表示在这一组因子在此模型训练过程中因子的重要性,由高到低排序。排名靠前因子的表现可能会影响到其他因子的得分,也就是说得分低的因子在这一组参与此模型训练的因子里面得分低,但是在其他因子组合或者其他模型里面不一定表现就差。

更新时间:2023-06-01 14:26

DataFrame如何输入模型训练

问题

预测数据前我想做个自定义筛选,策略中只是举例,但我想实现这个功能,应该怎么把DataFrame输入模型,目前的报错是

{w:100}

解答

这里需要把dataframe格式的数据转换成DataSource的类型,用如下代码就可以了。 data=DataSource.write_df(df),

更新时间:2023-06-01 02:13

超参寻优能用在深度学习上吗?

问题

为啥我的超参寻优用在DNN上,一直显示在运行,却没有结果

-update:刚把分布式运行勾选去掉,开始执行了 \n {w:100}{w:100}

{w:100}{w:100}{w:100}{w:100}

感觉很慢,这个效率很低啊

\

更新时间:2023-06-01 02:13

平台能不能实现 先选股+后排序?

问题

平台能不能实现 先选股+后排序?

解答

已有完善的选股策略,选股结果过多,没有找到好的排序方法。听说平台有一个stockranker很好用,我就想试试,在自己研究的时候发现,发现两种方案:1是传统方案,2是AI方案。

传统方案,比如海龟策略等,可以得到选股结果,但是里边没有模型训练,也就没有排序的功能;

AI方案,在输入特征因子的时候,只能输入选股结果相关的属性,所以不能实现先选出结果后用stockranker排序;(我理解是选股结果对AI来说就是0和1,所以什么都学不到?)

我在想如何把两者结合起来,先用传统方案选股,再用AI方案对选股结果排序

大家有什么好的

更新时间:2023-06-01 02:13

咨询一下,用stockRanker训练,不加中性化和标准化,收益不错,加了之后收益就负了,这是为什么啊

问题

咨询一下,用stockRanker训练,不加中性化和标准化,收益不错,加了之后收益就负了,这是为什么啊

解答

您好,stockranker算法是树状结构的,它本身是不需要标准化的,您标准化后会改变数据,也会使模型训练发生改变,进而就会造成了策略的计算改变哦

更新时间:2023-06-01 02:13

怎么用机器学习判断股票的形态?

问题

怎么用机器学习判断股票的形态?

解答

此问题可以作为一个研究课题了。 人眼如何判断三重底?先有一个下跌趋势然后盘整,形成了三个低点,接着向上突破成功了就是所谓的三重底。但是要是盘整后往下成功突破呢,就变成了下跌趋势中的一个中继三重顶形态,所以要等价格走出来后才知道是什么形态,个人理解可以把关键点的信息(例如顶和底的数据)作为特征告诉机器去学习,那又如何提取顶和底这种关键信息呢?可以先从简单形态识别开始研究,例如把各个周期的均线金叉,死叉等信号作为特征,通过机器学习看下哪种周期组合收益最高。 关于这个话题,大家都可以一起来讨论一下。

BigQuant策略组

更新时间:2023-06-01 02:13

深度学习的模型训练的时候的参数:学习率在哪儿设置?

问题

深度学习的模型训练的时候的参数:学习率在哪儿设置?

更新时间:2023-06-01 02:13

滚动训练报错NaTType does not support

问题

滚动训练报错NaTType does not support

https://bigquant.com/experimentshare/3ca7d2657bbb411b9a0f4c908d3a99a0

\

更新时间:2023-06-01 02:13

AIStudio FAQ

AIStudio 使用常见问题

更新时间:2023-05-16 10:05

如何对AI量化策略进行管理?三步走

导语

大部分初学AI-量化的同学做选股策略的做法都是简单粗暴将全市场的股票数据都放入模型训练, 然后企图训练出一个万能模型-图灵机, 寄希望于仅仅只通过暴力的数据挖掘,或者某些因子,就可以打造出一个适应于 任何行情的选股模型--圣杯。

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}但遗憾的是,A股市场中的数据噪音是很大的,不同的市场环境,不同的因子的选股效

更新时间:2023-05-06 07:34

ChatGTP教程 - OpenAI语言模型的全面指南

用ChatGPT生成的ChatGPT教程

更新时间:2023-02-03 21:30

用k-近邻分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7f7021993a9f40149189be939e15c882

\

更新时间:2023-01-03 07:44

刚用这个平台,问一个关于回测的问题

问题

比如在模型训练的时候,预测未来五日的收益率是用到当日的收盘价的,比如close_0。

那么在回测的时候取预测值用的是currentdate这个函数来,也就是取当天的预测值,但当日的收盘价还没有出来,怎么获得当日的预测值呢?还是实际上是获得前一日的预测值?

解答

日频回测里,主函数或者是handle_data函数,每根bar所处的时间点都是当前bar的收盘时间;模型里也是根据每天的价格进行预测的。至少在你描述的这里是不存在未来函数的情况

更新时间:2022-12-20 14:20

AI+涨停板特征提取

策略案例

https://bigquant.com/experimentshare/6ac00fc386f74acb886b8168d7809b98

\

更新时间:2022-11-20 03:34

分享一个可视化深度学习建模的例子

策略案例

https://bigquant.com/experimentshare/9426627188af4f488644532c01328c14

\

更新时间:2022-11-20 03:34

lighGBM训练出错

https://bigquant.com/experimentshare/ada6ffe2d3f94a6f9e0ccac744524604

\

更新时间:2022-11-09 01:23

回测老内核重启

问题

回测老内核重启然后就停了。 是免费的缘故么?

\

解答

得看下策略具体是在哪个模块停止内核的,如果回测模块没有做过多改动的话,在回测阶段重启内核的概率不大,得检查下是否是训练集和预测集数据过大导致训练模型时内核重启的原因。

更新时间:2022-11-09 01:23

FactorVAE:基于变分自编码器的动态因子模型

摘要

{w:100}公众号遴选了各大期刊前沿论文,按照理解和提炼的方式为读者呈现每篇论文最精华的部分。QIML希望大家能够读到可以成长的量化文章,愿与你共同进步!

本期遴选论文 标题:FactorVAE: A Probabilistic Dynamic Factor Model Based on Variational Autoencoder for Predicting Cross-sectional Stock Returns

更新时间:2022-08-31 06:22

机器学习流程和算法介绍及金融领域应用实例-长江证券-20180207

摘要

机器学习问题和其流程

机器学习问题本质上在于找出使得经验风险泛函(样本误差)最小的建模流程,基本的流程可以分为特征工程、模型训练和模型融合。本篇就上述三个过程,给出相关算法的介绍,并补充了之前系列报告中未详细介绍的内

机器学习三大步骤

特征工程包含特征构建、特征提取和特征选择三个过程,以选择相对最优的特征空间。特征工程往往会采用无监督和有监督的机器学习算法。机器学习模型可以分为线性模型、树模型和深度学习模型。线性模型主要体现了数据中的线性关系,如输入与输出的线性关系,点集的线性可分;树模型可以很好的捕捉输入与输出的非线性关系,和线性模型相辅相成。一些改进的随

更新时间:2022-08-31 01:53

黄金价格预测:使用 Python 机器学习的分步指南

是否有可能预测黄金价格的走向?

是的,让我们使用机器学习回归技术来预测最重要的贵金属之一黄金的价格。

我们将创建一个机器学习线性回归模型,该模型从过去的黄金 ETF (GLD) 价格中获取信息,并返回第二天的黄金价格预测。

GLD是直接投资实物黄金的最大ETF。

\


导入库并读取黄金 ETF 数据

首先要做的是:导入实施此策略所需的所有必要库。

然后,我们读取过去 12 年的每日黄金 ETF 价格数据并将其存储在 Df 中。我们

更新时间:2022-07-05 07:13

关于模型训练的一点简单想法:以DNN和StockRanker对比为例

作者:donkyxote

策略思想

基于17个短期因子,其中8个量价因子,9个均线因子。训练集使用2005-01-04至2020-06-01日,每个交易日买入模型当日预测结果排名靠前的1只A股股票,次日卖出。

StockRanker模型

原有模型是基于BQ提供的Stockranker机器学习算法:


![图 1:stockranker-2021年1月4日至2022年1月21日的模拟实盘结果{w:100}{w:100}](/wiki/api/attachments.redirect?id=bb5b3d09-3e20-4840-b5e0-2220d7f55

更新时间:2022-06-22 14:58

分页第1页第2页第3页第4页
{link}