{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-787:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-787:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-794:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-803:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-810:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-606:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-803:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-822:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-606:training_ds","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84:data"},{"DestinationInputPortId":"-606:predict_ds","SourceOutputPortId":"-86:data"},{"DestinationInputPortId":"-794:input_data","SourceOutputPortId":"-787:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-794:data"},{"DestinationInputPortId":"-810:input_data","SourceOutputPortId":"-803:data"},{"DestinationInputPortId":"-86:input_data","SourceOutputPortId":"-810:data"},{"DestinationInputPortId":"-822:options_data","SourceOutputPortId":"-606:predictions"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2011-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nwhere(shift(close, -5) / shift(open, -1)>0,1,0)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2015-05-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-84","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-86","ModuleId":"BigQuantSpace.dropnan.dropnan-v1","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-86"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-86","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":14,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-787","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-787"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-787"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-787","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-794","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-794"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-794"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-794","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-803","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-803"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-803"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-803","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-810","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-810"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-810"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-810","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-822","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.predictions = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1/stock_count for k in range(stock_count)]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.options['hold_days'] = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n daily_prediction = context.predictions[\n context.predictions.date == data.current_dt.strftime('%Y-%m-%d')]\n\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n if equities!={}:\n instruments = [k for k in equities if daily_prediction[daily_prediction.instrument==k].classes_prob_0.values[0]>0.5]\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(daily_prediction[daily_prediction.classes_prob_1>0.5].instrument[:len(buy_cash_weights)])\n for i, instrument in enumerate(buy_instruments):\n cash = context.portfolio.cash * buy_cash_weights[i]\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-822"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-822"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-822"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-822"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-822"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-822","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-606","ModuleId":"BigQuantSpace.kneighbors_classifier.kneighbors_classifier-v1","ModuleParameters":[{"Name":"n_neighbors","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"weights","Value":"uniform","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"algorithm","Value":"auto","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"leaf_size","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"metric","Value":"minkowski","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"key_cols","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"workers","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"other_train_parameters","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-606"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-606"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-606"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"predict_ds","NodeId":"-606"}],"OutputPortsInternal":[{"Name":"output_model","NodeId":"-606","OutputType":null},{"Name":"predictions","NodeId":"-606","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-84' Position='376,467,200,200'/><NodePosition Node='-86' Position='1078,418,200,200'/><NodePosition Node='-787' Position='381,188,200,200'/><NodePosition Node='-794' Position='385,280,200,200'/><NodePosition Node='-803' Position='1078,236,200,200'/><NodePosition Node='-810' Position='1081,327,200,200'/><NodePosition Node='-822' Position='838.9483642578125,709.6844482421875,200,200'/><NodePosition Node='-606' Position='704.31689453125,562.9445190429688,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2020-04-29 09:44:11.106835] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-04-29 09:44:11.212942] INFO: moduleinvoker: instruments.v2 运行完成[0.106109s].
[2020-04-29 09:44:11.219164] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-04-29 09:44:14.856434] INFO: 自动标注(股票): 加载历史数据: 431567 行
[2020-04-29 09:44:14.859589] INFO: 自动标注(股票): 开始标注 ..
[2020-04-29 09:44:16.045518] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[4.826362s].
[2020-04-29 09:44:16.051769] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-04-29 09:44:16.056037] INFO: moduleinvoker: 命中缓存
[2020-04-29 09:44:16.057244] INFO: moduleinvoker: input_features.v1 运行完成[0.005476s].
[2020-04-29 09:44:16.065952] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-04-29 09:44:19.201122] INFO: 基础特征抽取: 年份 2010, 特征行数=431567
[2020-04-29 09:44:23.429769] INFO: 基础特征抽取: 年份 2011, 特征行数=0
[2020-04-29 09:44:24.156206] INFO: 基础特征抽取: 总行数: 431567
[2020-04-29 09:44:24.159622] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[8.093665s].
[2020-04-29 09:44:24.168657] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-04-29 09:44:24.379420] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.002s
[2020-04-29 09:44:24.382695] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.002s
[2020-04-29 09:44:24.387422] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.004s
[2020-04-29 09:44:24.392247] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.003s
[2020-04-29 09:44:24.680070] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.286s
[2020-04-29 09:44:24.692822] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.008s
[2020-04-29 09:44:24.884874] INFO: derived_feature_extractor: /y_2010, 431567
[2020-04-29 09:44:25.596779] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[1.428108s].
[2020-04-29 09:44:25.600915] INFO: moduleinvoker: join.v3 开始运行..
[2020-04-29 09:44:27.511606] INFO: join: /y_2010, 行数=431567/431567, 耗时=1.717995s
[2020-04-29 09:44:27.771835] INFO: join: 最终行数: 431567
[2020-04-29 09:44:27.775652] INFO: moduleinvoker: join.v3 运行完成[2.174726s].
[2020-04-29 09:44:27.799073] INFO: moduleinvoker: dropnan.v1 开始运行..
[2020-04-29 09:44:28.681144] INFO: dropnan: /y_2010, 424271/431567
[2020-04-29 09:44:29.034001] INFO: dropnan: 行数: 424271/431567
[2020-04-29 09:44:29.041684] INFO: moduleinvoker: dropnan.v1 运行完成[1.242603s].
[2020-04-29 09:44:29.044076] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-04-29 09:44:29.128422] INFO: moduleinvoker: instruments.v2 运行完成[0.084311s].
[2020-04-29 09:44:29.134510] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-04-29 09:44:32.066708] INFO: 基础特征抽取: 年份 2015, 特征行数=182955
[2020-04-29 09:44:32.268628] INFO: 基础特征抽取: 总行数: 182955
[2020-04-29 09:44:32.276360] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[3.141847s].
[2020-04-29 09:44:32.279117] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-04-29 09:44:32.379667] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.001s
[2020-04-29 09:44:32.382190] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.001s
[2020-04-29 09:44:32.388575] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.005s
[2020-04-29 09:44:32.394561] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.002s
[2020-04-29 09:44:32.399711] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2020-04-29 09:44:32.402604] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.001s
[2020-04-29 09:44:33.122058] INFO: derived_feature_extractor: /y_2015, 182955
[2020-04-29 09:44:34.562356] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[2.28321s].
[2020-04-29 09:44:34.565138] INFO: moduleinvoker: dropnan.v1 开始运行..
[2020-04-29 09:44:34.944732] INFO: dropnan: /y_2015, 181081/182955
[2020-04-29 09:44:36.182163] INFO: dropnan: 行数: 181081/182955
[2020-04-29 09:44:36.187827] INFO: moduleinvoker: dropnan.v1 运行完成[1.622684s].
[2020-04-29 09:44:36.748581] INFO: moduleinvoker: kneighbors_classifier.v1 开始运行..
[2020-04-29 09:45:33.160277] INFO: moduleinvoker: kneighbors_classifier.v1 运行完成[56.411699s].
[2020-04-29 09:45:34.551905] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-04-29 09:45:34.557698] INFO: backtest: biglearning backtest:V8.3.4
[2020-04-29 09:45:34.559493] INFO: backtest: product_type:stock by specified
[2020-04-29 09:45:34.669284] INFO: moduleinvoker: cached.v2 开始运行..
[2020-04-29 09:45:41.867909] INFO: backtest: 读取股票行情完成:913770
[2020-04-29 09:45:45.393335] INFO: moduleinvoker: cached.v2 运行完成[10.724035s].
[2020-04-29 09:45:46.083097] INFO: algo: TradingAlgorithm V1.6.7
[2020-04-29 09:45:46.552377] INFO: algo: trading transform...
[2020-04-29 09:45:47.879397] INFO: Performance: Simulated 78 trading days out of 78.
[2020-04-29 09:45:47.880500] INFO: Performance: first open: 2015-01-05 09:30:00+00:00
[2020-04-29 09:45:47.881323] INFO: Performance: last close: 2015-04-30 15:00:00+00:00
[2020-04-29 09:45:51.046391] INFO: moduleinvoker: backtest.v8 运行完成[16.494505s].
[2020-04-29 09:45:51.048128] INFO: moduleinvoker: trade.v4 运行完成[17.880839s].
- 收益率50.58%
- 年化收益率275.25%
- 基准收益率34.42%
- 阿尔法0.65
- 贝塔0.72
- 夏普比率4.25
- 胜率0.0
- 盈亏比0.0
- 收益波动率31.64%
- 信息比率0.09
- 最大回撤9.57%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-1a69d46026424ac4829d7d9fe72a9204"}/bigcharts-data-end