读取 bigtrader 文档 https://bigquant.com/wiki/doc/4ESrglWGeZ ,生成讲解BigTrader是BigQuant平台的核心量化交易引擎,提供了完整的回测、模拟交易和实盘交易功能。这份API参考文档定义了所有可用的接口、
更新时间:2025-06-05 10:39
curl --request GET \
--url 'https :/ / api. itick. org /stock/kline?region=SH&code=600941&kType=1&et=1741239240000&limit=100' \
--header 'accept: application/json' \
--header 'token: bb42e24746784dc0af821abdd********337697a752de1eb'
在金融科技高速发展的 2025 年,港美股市场的实时行情数据 API 已成为量化
更新时间:2025-05-21 15:05
特别注意:本策略在编写和优化时基于当时的未更新的财务因子字段,目前该数据和字段经过了更新和错误修正。故目前利用本策略的代码尽管可以运行,但回测结果与文中的差异很大,效果大不如从前,以目前的数据回测结果为准,深表歉意。但本文介绍的策略编写思路和参数优化过程仍然值得学习,读者可以参考该思路进行策略编写。
\
在量化交易中,基本面是至关重要的一部分。它能提供关于公司财务状况、行业前景等关键信息,帮助量化投资者确定交易标的的内在价值,为量化模型提供基础数据和逻辑依据,使模型能更精准地筛选股票,把握市场趋势,降低投资风险并提高交易策略的有效性。基本面的指标因子较多
更新时间:2025-05-19 06:59
大家好,我是策略老李。五一小长假即将收尾,不知大家是否已经按照上期教程搭建好了自己的本地代码库呢?今天老李将为大家奉上《手把手编写miniQMT实盘量化执行程序》的第2篇-主程序入口。废话不多说直接上代码:
main.py
"""
主程序入口
"""
from quant_tra
更新时间:2025-05-17 03:34
本功能实现了从云端(bigquant.com)策略信号生成到终端自动获取并下单的完整闭环。用户在BigQuant云端平台运行量化策略后,系统会自动生成交易信号,用户在本地终端通过Python程序自动获取这些信号,最终将信号保存到文件单目录,实现下单功能。
此功能旨在提升量化交易的效率和自动化程度,减少人工干预,确保交易信号能够快速、准确地执行。
\
详细流程如下:
1.用户在宽邦科技的bigqu
更新时间:2025-04-27 10:20
行业轮动策略是一种量化交易策略,旨在通过在不同行业之间进行资金分配,捕捉市场趋势和行业表现的周期性变化。 从名字即可看出,经济周期导致任何市场状态下可能都会存在股市价格表现较好的行业,因此我们如果能布局这些行业并定期轮动调整,那会取得还不错的投资效果。与单纯持有某个行业或个股相比,行业轮动策略通过分散投资风险,提高了组合的抗风险能力,并且能够在不同的市场环境中寻找最佳的投资机会。
本策略是曾经在社区里的一个策略复现而来,策略链接为:<https://bigquant.com/wiki/doc/v10-uKB4qr0I
更新时间:2025-04-20 03:29
金融市场上每个人都有一套自己的分析方法,无论你是一个技术派、基本面派、消息派还是量化投资派,对于“均线”这个名词一定不会陌生。虽说这个概念诞生于市场技术分析领域,但由于它的通俗易用,均线一直受到投资者和市场分析人士的青睐。
均线的全称是移动平均线(MA)。移动平均线是个什么概念?即通过等权或指数加权的方式,计算一段时期内的平均价格,是将某一段时间的收盘价之和除以该周期。 比如,日线MA5的意思就是说,5天内的收盘价除以5。
的实时行情推送,提供 Tick 级 Bid/Ask 深度数据与波动率指标;股票 API则覆盖 A 股、港股及美股市场,包含 Level-2 逐笔成交和十档盘口信息。通过统一的 RESTful 接口,开发者可免费获取标准化 OHLCV 数据,实现外汇、股票等多资产策略的快速开发。iTick 的免费报价 API不仅支持历史数据回溯(最长 15 年日线级),还提供实时数据流用于策略验证,特别适合 RSI
更新时间:2025-03-18 15:34
在量化交易领域,iTick 报价 API凭借其强大的多市场覆盖能力,已成为专业交易员的首选数据解决方案。其外汇 API支持全球主要货币对(如 EURUSD、GBPUSD)的毫秒级行情推送,包含 Bid/Ask 深度报价和实时波动率数据;股票 API则覆盖 A 股、港股及美股市场,提供 Level-2 逐笔成交和十档盘口信息。通过统一的 RESTful 接口,开发者可轻松获取标准化的 OHLCV 数据,实现外汇、股票等多资产策略的无缝适配。凭借高频低延迟特性,iTick API 特别适合日内交易策略开发,其历史数据回溯功能支持长达 15 年的日线级数据下载,为策略回测提供
更新时间:2025-03-18 15:01
简单来讲,量化投资就是利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程。
量化交易 是指借助现代统计学和数学的方法,利用[计算机技术来进行交易的证券投资方式。量化交易从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可以持续的、稳定且高于平均收益的超额回报。
量化投资模型只是一种工具、一种方法、一种手段,能实现成熟而有效的投资理念,需要不断根据投资理念的变化、市场状况的变化而进行修正、改善和优化,换而言之,有效的模型建立在适应市场环境的有效
更新时间:2025-03-10 16:44
我们先来看一个量化交易策略在本平台的回测曲线和回测数据,该策略在三年期的年化收益率是24.84%,最大回撤为42个点(在2024年初出现严重回撤)。总体来说,这个策略总体是一个正收益系统的策略,但在某些时间阶段出现了大幅波动甚至严重回撤现象。
2023年底和2024年初基本面选股策略结果出现回撤是多种因素综合作用的结果。这些因素相互影响,使得基本面选股在这一时期面临一定的挑战。那么基本面选股究竟是什么呢?本文将简要
更新时间:2025-02-21 03:25
-- 统计30天内主力流入占比大于12%的天数
-- 总资产报酬率roa要大于5
-- 5天的收益率/20天的收益率
-- 最近5日的成交额排名
-- 平均10天的换手率
-- 统计30天内主力流入占比大于12%的天数
-- 现金流量
-- 当日收盘价破 56天最高价(创新高)
-- 10天的sma线/30天的sma线
-- SAR抛物线指标
-- 10天的波动率/60天的波动率
-- CCI14天的指标
-- 3天收益率的 排名
-- 判断 当日的资金流入净额>昨日资金流入净额
-
更新时间:2025-02-16 03:42
Bigquant平台提供了较丰富的基础数据以及量化能力的封装,大大简化的量化研究的门槛,但对于较多新手来说,看平台文档学会量化策略研究依旧会耗时耗力,我这边针对新手从了解量化→量化策略研究→量化在实操中的应用角度,整理了一些视频+配套源码,有兴趣的朋友,可详见链接观看,https://note.youdao.com/s/RlfuJuCB
资料内容主要包括:AI策略编写、非AI策略编写、大盘数据分析等
如:下面这个策略就是非AI策略编写,接合大盘、板块、个股当前的市场特性,自定义选股逻辑。
:
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
#----------------------------------
更新时间:2025-02-15 12:29
量化交易中,多因子合成是针对因子收益率的合成还是对于因子暴露值的合成?
更新时间:2025-02-14 09:58
本文探讨了如何利用机器学习技术在加密货币交易中利用动量效应。加密货币交易近年来在私人投资者中越来越受欢迎,而动量效应对底层市场的影响已被多项研究证实。量化交易系统可以通过动量指标来开仓和平仓,但现有的利用动量效应的方法并未依赖机器学习,而是基于人工制定的规则,这些规则在加密货币市场这种高度波动的环境中并不适用。本文提出利用机器学习方法自动检测加密货币市场数据中的动量效应,并预测下一个交易日加密货币受动量效应影响的可能性及其方向。通过对比测试,机器学习模型能够较好地预测短期价格波动,减少错误交易信号的数量,并提高投资回报率。
加密
更新时间:2025-01-23 07:39
量化交易员从哪里获得免费数据源
金融从业者和量化人员在日常工作里,常常迫切地需要获取金融实时报价、股票、指数、外汇等各类数据,而 API 已然成为他们不可或缺的得力工具,为数据获取开辟了便捷高效的通道。其中,实时报价 API 犹如市场的敏锐触角,能够让用户瞬间抓取到最新的市场价格信息,无论是股票的实时股价波动、指数的点位升降,还是外汇的汇率变化,都能精准掌握,这对于精准地把握市场动态、果断地做出快速决策起着极为关键的作用。一些知名的实时报价 API 如某些专业金融数据服务平台所提供的接口,虽可能涉及一定费用,但数据的及时性与准确性有较高保障。此外,免费股票 API 也为部分预算有限或处于探索
更新时间:2025-01-02 14:58
在量化交易与数据科学领域,特征工程是一个至关重要的步骤,直接影响到模型的预测能力与效果。OpenFE 是一个开源的特征工程框架,旨在帮助研究人员和工程师快速生成高质量的特征。然而,原始版本的 OpenFE 算子虽然功能强大,但在某些应用场景下仍存在一定的局限性。为了更好地满足我们在量化研究中的需求,我对 OpenFE 算子进行了重新构建,丰富衍生特征生成;并将其与 XGBoost 相结合,用于特征重要性评估,方便后续标的打分。
本文将详细介绍这一重构过程,并通过实际案例展示如何使用这一改进后的算子生成衍生特征,并使用 XGBoost 进行特征重要性评估,从而优化我们的量化模型。
更新时间:2024-12-24 06:43
金融从业者和量化人员在日常工作里,常常迫切地需要获取金融实时报价、股票、指数、外汇等各类数据,而 API 已然成为他们不可或缺的得力工具,为数据获取开辟了便捷高效的通道。其中,实时报价 API 犹如市场的敏锐触角,能够让用户瞬间抓取到最新的市场价格信息,无论是股票的实时股价波动、指数的点位升降,还是外汇的汇率变化,都能精准掌握,这对于精准地把握市场动态、果断地做出快速决策起着极为关键的作用。一些知名的实时报价 API 如某些专业金融数据服务平台所提供的接口,虽可能涉及一定费用,但数据的及时性与准确性有较高保障。此外,免费股票 API 也为部分预算有限或处于探索阶段的从业者提供了便利,可在一定程
更新时间:2024-12-17 16:07
动量因子和反转因子是量化交易中一对相反的概念,虽然它们的逻辑有所不同,但都基于市场上存在的某种”惯性‘现象,即资产价格可能会在一段时间内延续其之前的趋势,或者由于市场的过度反应,导致价格偏离基本面。
动量因子的核心思想是:过去表现较好的股票在未来会继续走强,表现差的股票则可能继续低迷。假设A公司股票过去一个月的涨幅为15%,B公司过去一个月的涨幅为-5%,那么我们认为A公司股票有可能继续上涨,而B公司股票则可能下跌或表现不好。
而反转则认为在过去一段时间中表现较差的股票在未来可能经历收益的较大逆转,出现反弹。假设A公司股票过去一个月的跌幅为-20%,那么A公司股票的价格可
更新时间:2024-12-05 10:12
在深度学习的所有应用场景中,股价预测也无疑是其中一个异常诱人的场景。随着传统线性模型的潜力逐渐枯竭,非线性模型逐渐成为量化交易的主要探索方向,深度学习对非线性关系良好的拟合能力让其在量化交易中面临着广阔的应用前景。但与常规的回归预测任务不同的是,股价预测问题有其独特性,存在时间序列、噪声高、过拟合等问题。当前对于深度学习在股票交易中的研究主要侧重在因子挖掘、图神经网络与知识图谱、新闻与社交媒体等非结构化数据的利用、以及时序模型改进四个方面。我们会在文章中依次探讨近5年顶会上对这四个方向的研究。
本文主要介绍MSRA在KDD 2019上发表的两篇文章,这两篇文章主要关注深度学习在
更新时间:2024-12-05 06:16
量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。
量化交易模型的一般由以下几个部分组成:
1 数据处理模型: 量化交易的基石是数据。这包括了从历史价格、成交量到公司财报、宏观经济指标等各类数据。对这些数据的收集、清洗和处理是构建有效模型的首要步骤。**[BigQuant策略编写平台](ht
更新时间:2024-12-05 02:12
NN:=BARSLAST(DATE<>REF(DATE,1))+1;
HH:=REF(HHV(HIGH,NN),NN);
LL:=REF(LLV(LOW,NN),NN);
CC:=VALUEWHEN(DATE<>REF(DATE,1),REF(CLOSE,1));
OO:=VALUEWHEN(DATE<>REF(DATE,1),O);
HHJ:=IF(NN=1,OO,REF(HHV(H,NN),1));
LLJ:=IF(NN=1,OO,REF(LLV(L,NN),1));
RFILTER:=(HH-LL)>28/100*(OO/100);
更新时间:2024-11-08 09:52
以下涉及到的流数据暂未开放,后期我们会为大家提供流数据获取服务。
构造这个因子需要用到的数据的表格形式如下:
| 日期 | 买一量 | 卖一量 |
|---|---|---|
| t1 | b1 | a1 |
| t2 | b2 | a2 |
| … | … | … |
| tn | bn | an |
首先我们求出截面净委买比例:
最后将分钟内的截面净委买比例求平均即可得到时间加权的净委买比例,所以这
更新时间:2024-10-22 07:09