DeepAlpha系列报告旨在从基础量价数据中,借鉴深度学习模型,应用于量化投资领域。学习模型包括:全连接深度网络(DNN)、卷积神经网络(CNN)、长短期记忆网络(LSTM)、对抗生成网络(GAN)、ResNet、TabNet,同时报告将引入自然语义识别NLP领域近年热门算法如BERT、Transformer、GPT、XLNet等,尝试构建各类DeepAlpha模型。
本篇文章通过传统机器学习算法对相同的量价因子进行实验,方便与深度学习模型进行对比。
随机森林属于集成学习的一种,通过集成学习的Bagging思想将多棵树集成的一种算法:它的基本单
更新时间:2023-03-05 03:09
岗位职责: 1.解答用户问题,协调内部沟通; 2.协助组织线上线下活动,提升社区活跃度; 3.协助提供文字、视频等优质内容,以及内容的站内外分发。
任职要求: 1、大二及以上,对量化投资、人工智能有强烈兴趣; 2、熟悉常用办公软件,有良好的文字功底,包括但不限于Word,Excel,PPT; 2、优秀的学习能力、沟通能力、协调能力; 3、认真负责,自我驱动能力强。
岗位职责: 1、金融量化投资内容创作; 2、B端活动运营。
任职要求: 1、大二及以上,中英文流利,具备一定的金融经济背景或有相关机构实习经历; 2、熟悉常用办公软件,有良好的文字功底
更新时间:2023-02-27 10:28
你好
更新时间:2023-02-10 06:37
随着交易数据量越来越大,金融领域的各种应用已经验证了使用人工智能可以更好地进行投资或业务决策,也越来越多人相信人工智能技术在金融领域的应用前景。人工智能提供了一种适用于从个人数据到业务流程的高效数据分析工具。 与此同时,越来越多金融机构开始使用机器学习方法,以期在市场竞争中赢得优势。量化投资机构逐渐抛弃传统的分析方法,转而使用机器学习算法预测市场走势和选择投资组合。 与传统投资方式相比,量化投资方式具有更高效率及准确性。量化投资是一种基于计算机系统而生成的投资策略选择方法,可以对数学模型进行监理,在实现交易理念活动过程中构建更为完善规范的量化投资评价体系。在对模型进行监理的基础上,再对历史数据
更新时间:2023-02-01 15:30
绝大多数的散户目前都是采用主观投资法,所以才会造成买了就跌,卖了就涨。因为主观投资容易被市场情绪所影响,会被自己的心魔所控制。
由于是主观投资,所以每次买卖过程中都充满了恐惧和贪婪,买了就怕跌下来,卖了又怕涨上去,持股过程一直处在焦虑之中。
量化投资由于是按照模型发出的信号来操作,无需参杂人的主观情绪和主观预测,所以操作起来要轻松得多。
量化投资是把数学、统计学、金融学、计算机AI技术结合起来,通过挖掘海量大数据,寻找规律,建立先进的投资模型以替代人为的主观判断。
量化投资可以发现和利用其他市场参与人的错误报价,从而抓住普通人看不到的投资机会,使投资效率大大提高。
量化投资在70年代
更新时间:2023-01-20 03:38
在介绍自己之前,先看一下入坑一年写的一些策略吧,毕竟在这里策略的效果比名字有用。
: 65-74.
推荐原因:ESG投资是投资界和学术界都非常关注的一个领域,但目前对ESG投资的定义,以及如何构建一个可以结合回报和可持续性两个维度的最佳投资组合尚未达成一致。本文对当前市场中的ESG投资进行了分类,并介绍了ESG投资框架。
,股票的专业知识也没问题,有六年以上实践。Python和数据库的底子也有一点。不足之处是英语水平很差,英文资料读不了。
感觉在阅读学习文章时经常会碰到新术
更新时间:2022-12-20 14:20
多因子选股作为量化投资研究领域的经典模型,在海内外各类投资机构均受到广泛研究和实践应用。 在多因子模型中,决定策略收益稳健性的关键步骤正在于股票组合的权重配置。因此,从量化对冲策略追求收益稳定性的角度而言,组合权重优化对多因子模型起着至关重要的作用。
本篇报告有别于传统的多因子研究,我们并未将重点放在阿尔法因子的挖掘上,而是通过对股票组合的权重优化计算,找到了在市值中性、行业中性、风格因子中性约束下的最优投资组合,以及验证得到的组合权重是否满足了约束条件。
结构化多因子风险模型首先对收益率进行简单的线性分解,分解方程中包含四个组成部分:股票收益率、因子暴露、因子收益率和特质因
更新时间:2022-11-27 16:26
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
现在先说说证券行情吧。
1。国外的股票行情我就不谈了,这个我不是很了解,今天我来说说国内两大证券交易所,上交所和深交所两大交易所。
上交所的L1和深交所的L1行情,狭义的说就是五档行情,还是比较好获取,渠道很多,但是质量参差不齐。我说说质量稍微好点的,野路子无限断、无限延迟行情,我就不谈了。
首先,最好L2行情数据接口的肯定是从交易所购买,交易所每年30万或35万,从交易所购买这个市场,一般用于量化分析交易或追板的,而是用于市场展示软件公司,一般交易会购买L2行情数据,前面的文章已经提到过。交易所的官方网站上有很多这样的公司,我记得在2016年之前,这样的软件公司并不多,现在,无数,
更新时间:2022-11-18 08:17
如题
更新时间:2022-11-09 01:23
游凛峰先生,21年证券从业经历,多年海外投研经验,2009年加入工银瑞信基金,目前负责公司量化投资。深耕基本面量化投资多年,通过主动选行业+多因子量化选股,探索具有潜力的细分行业中的优质股票,注重自由现金流和盈利质量的匹配程度,实现“盈利稳定+最大化”。目前整体偏均衡成长风格,偏好配置持续高增长的行业,获取行业配置收益;个股盈利质量高,自由现金流等指标表现较优,长期业绩表现优秀。
基金经理:游凛峰先生,21年证券从业经历,2009年加入工银瑞信基金,目前负责公司量化投资,在管基金共7只,总管理规模约33.5亿元。海外投研经验丰富,深耕基本面量化投资多年,历史业绩表现优秀。
!
更新时间:2022-11-02 09:32
量化投资大师西蒙斯曾在一次演讲中说,“被美丽指引”是一个很不错的指导性原则。在西蒙斯看来,创办一家量化交易公司“美丽”的一面就在于,找一群正确的人,用正确的方法把事情做正确。
量化投资是一场团体赛,做出成绩需要团队共同的智慧输出。量化投资也是一门平衡的艺术,要不断在风险与超额收益之间寻找平衡点。
有行业专业人士,对超额收益的理解是这样的:超额收益并非只以高低来进行衡量,而是要长期有效、胜率相对较高才能形成有效的阿尔法收益,如果一个指数增强基金长期超额月度胜率(即超越基准指数收益)在60%-70%以上,指数增强阿尔法策略相对有效即被证明。既严谨对待了贝塔风险,不追逐某段时间的暴涨暴跌,同时也
更新时间:2022-10-21 11:39
近年来,量化投资在国内发展迅速,一批量化私募机构管理规模破百亿,少数头部破千亿,而且相当一部分量化私募在过往一年多时间取得不错的收益。
投资者在享有量化投资收益机会的同时,也在保持清醒的认识,量化投资也存在风险,能否取得超额收益关键仍在在核心团队,与团队建设、IT建设和团队积累的研究框架等密不可分。
1.投资范围更加广泛 量化投资借助计算机技术,搜集的信息更具有速度和广度,投资分析的范围覆盖面更广,基本可达整个市场。同时,量化投资可以针对全市场范围的品种,多角度分析且实现选择,促进交易者获得更多投资机会。
2.程序化交易,避免人为主观因素的影响 量化投资通过回测来证实或者证伪策略的历
更新时间:2022-10-19 03:22
当前,越来越多的金融机构开始使用机器学习方法,以期在市场竞争中赢得优势。而量化投资机构也逐步抛弃传统的分析方法,转而使用机器学习算法预测市场走势和选择投资组合。
而机器学习的优势在于,能够提供非线性关系的模糊处理,弥补了人脑思维模式,同时利用相关算法,可以大幅提高数据挖掘、处理效率。则借用机器学习,量化投资策略会变得更加丰富。
与此同时,在量化领域应用机器学习算法,仍然存在一些问题和挑战。那么,你在实践过程中,都碰到哪些问题呢?
更新时间:2022-10-14 09:36
Citadel纪录片分享!House of Ken Griffin – The Story of Citadel!了解Ken Griffin是如何把Citadel打造成为300亿美元对冲基金!
https://www.bilibili.com/video/BV1ot4y1j74y
Citadel城堡投资集团 肯·格里芬 在大卫·鲁宾斯坦访谈 The David Rubenstein Show - Citadel's
更新时间:2022-10-10 13:02
因诺资产徐书楠有关量化的解读-人工智能的深度运用,国内量化投资会有更长足的发展,资产配置应基于长期考量,短期表现偏随机性
https://www.bilibili.com/video/BV14B4y197bP
\
更新时间:2022-10-10 10:09
人工智能投资时代到来了吗?未来基金的将没有投资经理。幻方量化CEO陆政哲介绍幻方人工智能量化投资实践:什么是人工智能,人工智能的发展与应用,当前人工智能投资的实践案例,幻方在人工智能投资上的发展和人工智能投资的挑战与未来。
https://www.bilibili.com/video/BV1zD4y1Q7Un
幻方量化CEO陆政哲先生认为量化投资机构在发展历程上,会面临周期性的巨大考验,一方面是自身规模的增长给业绩带来的压力,
更新时间:2022-10-10 09:27
https://www.bilibili.com/video/BV1Ve4y1Y7NX
九坤郭泓辰:现在随着整个计算机科学的发展,包括算力的提高,现在量化投资能做的事情有很多,大家可以大量的应用数据和统计,对数据进行分析,建立各种的假设,并且验证自己的想法,最终就形成这样一个投资的流派。就是依靠计算机建模去把市场的投资逻辑进行梳理,最终形成一个长期可以在市场上盈利的结果,做成这样一个投资流派。
[https://www.bilibi
更新时间:2022-10-10 09:19
gcForest算法
gcForest(multi-Grained Cascade Forest)算法是2017年周志华教授提出来的一种基于树的深度模型,旨在作为深度神经网络的一种可供选择的替换。由于超参数更好的鲁棒性,小样本上更好的稳定性,因此该模型相对于神经网络可能在金融数据上有更好的表现。
gcForest的回测表现
将《机器学习与量化投资:避不开的那些事(1)》中的神经网络替换成为gcForest,按月收益回撤比可达15.959。
gcForest的参数敏感性
该模型的各个参数的敏感性都非常低。
[/wiki/static
更新时间:2022-10-10 01:40
参考 https://wesmckinney.com/book/ 编写 Python For Quants - 用于量化投资的Python
更新时间:2022-10-10 01:02