历史文档

涨停取消卖单

由yvan0617创建,最终由iquant 被浏览 324 用户

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平台:

https://bigquant.com/data/home

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

新版表达式算子:

https://bigquant.com/wiki/doc/dai-sql-Rceb2JQBdS

新版因子平台:

https://bigquant.com/wiki/doc/bigalpha-EOVmVtJMS5


如果当天涨停了,尾盘不想卖出,可以取消前日产生的卖单。具体方法是在回测模块的盘前处理函数中加入当天涨停的判断,如果是涨停就取消订单

样例策略

https://bigquant.com/experimentshare/d7cc3ce49f8848e3b6e85d03a5b16e7b

\

标签

回测模块
评论
  • \[2022-07-24 22:23:36.953216\] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: IndexError: index 0 is out of bounds for axis 0 with size 0 \[2022-07-24 22:23:36.961486\] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: IndexError: index 0 is out of bounds for axis 0 with size 0 \ IndexError Traceback (most recent call last) in 260 ) 261 \--> 262 m4 = M.trade.v4( 263 instruments=m9.data, 264 options_data=m8.predictions, in m4_handle_data_bigquant_run(context, data) 55 name_today = name_df\[name_df.date==today\] 56 for instrument in equities: \---> 57 name_instrument = name_today\[name_today.instrument==instrument\]\['name'\].values\[0\] 58 # 如果股票状态变为了st 则卖出 59 if 'ST' in name_instrument or '退' in name_instrument: IndexError: index 0 is out of bounds for axis 0 with size 0 \ 除了日期其他的地方都没动,运行之后出现如上错误,’记录持仓中st的股票’这段应该是输入的矩阵有问题,但是应该怎么改呢?
  • 如果持仓为空,这个程序就会报错。建议加上判别equities是否为空的逻辑 # ``` # 1. 资金分配 # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金 # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍) is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天) cash_avg = context.portfolio.portfolio_value / context.options['hold_days'] cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg) cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy) positions = {e.symbol: p.amount * p.last_sale_price for e, p in context.portfolio.positions.items()} equities = {e.symbol: e for e, p in context.portfolio.positions.items()} if len(equities) == 0: print("equities are empty :",today) else: # 记录持仓中st的股票 st_stock_list = [] name_df = context.name_df name_today = name_df[name_df.date==today] for instrument in equities: name_instrument = name_today[name_today.instrument==instrument]['name'].values[0] # 如果股票状态变为了st 则卖出 if 'ST' in name_instrument or '退' in name_instrument: # 指定一个limit_price,此时会以开盘价成交,这是由于初始化函数中改写了下单价格 context.order_target(context.symbol(instrument), 0, limit_price=1.0) st_stock_list.append(instrument) cash_for_sell -= positions[instrument] if st_stock_list!=[]: print(today,'持仓出现st股/退市股',st_stock_list,'进行卖出处理') # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰 if not is_staging and cash_for_sell > 0: instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply( lambda x: x in equities)]))) price_limit_status = context.price_limit_status status_today = price_limit_status[price_limit_status.date==today] for instrument in instruments: # 如果是st股票已经卖过了,就跳过 if instrument in st_stock_list: continue # 如果涨停就跳过股票 status_instrument = status_today[status_today.instrument==instrument]['price_limit_status'].values[0] if status_instrument>2: continue context.order_target(context.symbol(instrument),0) cash_for_sell -= positions[instrument] if cash_for_sell <= 0: break # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票 buy_cash_weights = context.stock_weights buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)]) max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument for i, instrument in enumerate(buy_instruments): cash = cash_for_buy * buy_cash_weights[i] if cash > max_cash_per_instrument - positions.get(instrument, 0): # 确保股票持仓量不会超过每次股票最大的占用资金量 cash = max_cash_per_instrument - positions.get(instrument, 0) if cash > 0: context.order_value(context.symbol(instrument), cash) ``` \
  • 解决了,谢谢。
{link}