新版保温杯带保存实盘信息版本
bigtrader引擎在提交模拟交易后,内部是启动容器去每日执行策略计算的。 所以如果要用策略的净值或者其他策略执行过程中的一些状态信息需要保存到本地。可以采用JSON文件的方式保存下来。
代码如下:
[https://bigquant.com/codesharev3/d4f893dc-72da
由bqt6pg72创建,最终由bq4y4j3i更新于
bigtrader引擎在提交模拟交易后,内部是启动容器去每日执行策略计算的。 所以如果要用策略的净值或者其他策略执行过程中的一些状态信息需要保存到本地。可以采用JSON文件的方式保存下来。
代码如下:
[https://bigquant.com/codesharev3/d4f893dc-72da
由bqt6pg72创建,最终由bq4y4j3i更新于
这个策略回测一天能运行,但是提交到模拟就报trainin为空
和其他序列到
由bq20kttn创建,最终由bq20kttn更新于
from bigquant import bigtrader, dai
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
from sklearn.linear_
由bql6ph74创建,最终由small_q更新于
在 AI 量化领域,模型的预测能力上限取决于数据质量(Garbage In, Garbage Out)。对于外汇这种高信噪比的市场,Tick 级别的数据清洗和录入是构建任何高频因子的前置条件。
很多宽客(Quant)在做特征工程时,习惯使用 1 分钟 K 线(OHLC)。但在外汇市场,大量的信息(
由bqb18wzv创建,最终由bqb18wzv更新于
做量化高频交易这些年,我复盘过所有策略失效的案例,发现近四分之一的问题都出在行情数据链路上 —— 对高频交易来说,数据延迟哪怕只有几十毫秒,都可能让套利策略从盈利变成亏损,连接断连几秒,就足以错过一波关键行情。今天就以我搭建个人高频交易系统的实战经历,聊聊外汇行情 API 的接入与优化,尤其是如何解
由bq7vcw7o创建,最终由bq7vcw7o更新于
新建可视化策略,用的模板,用lightgbm替换stockranker训练,报错,请帮忙看看 https://bigquant.com/codesharev3/c252eae7-38d1-4f20-ba82-c4144de50a02
: **857 # # context.order_target_percent(x.instrument, 0.0 if
由bqaluzhy创建,最终由bqaluzhy更新于
由bqlr9p7x创建,最终由bqlr9p7x更新于
由bqlr9p7x创建,最终由bqlr9p7x更新于
由bqlr9p7x创建,最终由bqlr9p7x更新于
在量化策略的研发链条中,大家往往过分关注模型(Model),而忽视了数据(Data)。但在实战中,Garbage In, Garbage Out 是铁律。对于港股这种机构主导的市场,K线图已经丢失了太多的博弈细节,只有 Tick 级数据才能还原市场的微观结构。
今天分享一下,如何在本地构建
由bqb18wzv创建,最终由bqb18wzv更新于
使用 bigtrader 提交实时模拟交易时提供的是原始的tick数据,虽然我们支持tick实时策略,但是有相当一部分交易者以中低频策略为主(也包括我自己),这篇帖子的目的是为那些中低频交易者提供实施对应的解决方案。
为了与主流行情软件(文华、快期、主流数据库)对齐,
由xuxiaoyin创建,最终由xuxiaoyin更新于
在构建量化交易策略的过程中,你或许也遇到类似的问题——网页行情刷新跟不上价格变化,延迟导致信号失效,策略回测再完美也敌不过实时数据的时差。\n对于高频或短周期策略而言,数据延迟是影响收益率和执行效率的关键风险点。解决的思路其实很直接:将实时行情流接入系统内部,让数据以流的形式被策略自动消费。
由bqrtfmrc创建,最终由bqrtfmrc更新于
在瞬息万变的市场中,绝大多数散户投资者都深陷一个共同的困境:抓住一只龙头股时,常因一时的调整便匆忙卖出,错失主升浪;而当手中的旧龙头风光不再时,却又因“执念”而固执坚守,眼睁睁看着利润回吐甚至深度套牢。他们在旧热点里挣扎,在新热点里追高,最
由bqoa5ecn创建,最终由bqoa5ecn更新于
笑宇老师新版保温杯策略是一套非常经典实用的机器学习滚动训练框架,可在此框架上进行魔改。原模型使用的是XGB模型,实际使用时如果回测期较长的话,耗时比较长,笔者将模型改为基于LightGBM 机器学习模型,用于快速验证魔改效果。同样使用2C/8G情况下,XGB跑5年数据常常宕机,LGBM实测十
由bq5campb创建,最终由bq5campb更新于
你是否也经历过这样的时刻?满怀期待地杀入某个热门板块,比如最近的商业航天或是AI应用,结果却在短短几天内亏损了几十个点。账户一片惨绿,以至于你连打开交易软件的勇气都没有了。这种挫败感和恐惧感,是许多交易者都曾体会过的切肤之痛。
在这种困境下,交易之路该如何继续?
由bq0sxhmu创建,最终由bq0sxhmu更新于
很多人一提到量化投资,脑海里浮现的都是复杂的代码、闪烁的屏幕和神秘的“黑箱”。但实际上,量化投资的真正精髓并不在于编程,而在于一个更根本、更直观的概念:“因子”。本文将为你揭示三个关于量化投资的反直觉真相,帮助你拨开迷雾,理解其核心。
量化投资的首要真相
由bq7td619创建,最终由bq7td619更新于
from bigmodule import M
# <aistudiograph>
# @param(id="m5", name="initialize")
def m5_initialize_bigquant_run(context):
from bigtrader
由bql77fej创建,最终由qxiao更新于