基于LSTM模型的智能选股策略
由clearyf创建,最终由qxiao更新于
由clearyf创建,最终由qxiao更新于
由ypyu创建,最终由ypyu更新于
机器学习已经广泛地应用在对于资产市场的分析中。但是,在浩如烟海的机器学习算法中,到底哪种算法能取得更优的预测效果呢?发表在《Applied Mathematical Finance》的这篇文章利用随机森林算法对股价d天之后的涨跌方向进行了预测。发现相比于SVM、线性判别分析等模型,随机森林可以取
由ypyu创建,最终由ydong更新于
# 102
def func(a):
'''
a: 输入数组,已经排好序
返回值:出现次数最多的元素,如果有多个,输出最早出现的
'''
dic = dict()
for x in range(len(a)):
由bqjbfe2i创建,最终由bqjbfe2i更新于
这是本系列专题研究的第四篇:基于卷积神经网络CNN的深度学习因子选股模型。卷积神经网络(Convolutional Neura
由clearyf创建,最终由clearyf更新于
本视频课程包含python、pandas、numpy基础,配合在BigQuant平台上练习,掌握编程基础,读懂代码、编写简单的代码。
[https://www.bilibili.com/video/BV1dE411d7Q4?p=2](https://www.bilibil
由iquant创建,最终由iquant更新于
Google 2015年11月开源的人工智能系统 数据流(flow)图技术来进行数值计算
节点:数据 / 值运算 边:多维数据(tensors - 张量,python numpy ndarray)的流动
构建图:将计算流程表示成图 执行图:通
由ypyu创建,最终由ypyu更新于
由ypyu创建,最终由ypyu更新于
算法交易起源于上世纪中叶的配对交易
历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动
由ypyu创建,最终由ypyu更新于
BigQuant平台不仅支持传统机器学习模型,同时还对深度学习模型模块进行了封装,方便用户直接使用策略生成器开发策略,降低策略开发难度。本文对BigQuant平台上策略生成器已经支持的深度学习模块进行简单介绍。
深度学习模型通过功能层进行积木式拼接,典型的模型构架如下:
由clearyf创建,最终由clearyf更新于
这是本系列专题研究的第六篇:基于DNN模型的深度学习智能选股策略。本文简单介绍了和DNN相关的原理,并举了一个实例,具体展示了如何应用以及应用的结果。
神经网络的每个单元结构如下:
![图1.神经元结构](/wiki/
由clearyf创建,最终由clearyf更新于
从AlphaGo到AlphaStar,深度学习的强大逐步展现给世人。那么,什么是深度学习呢?本文将简要介绍深度学习的框架以及流程。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,
由clearyf创建,最终由clearyf更新于
顾名思义,“无监督”学习发生在没有监督者或老师并且学习者自己学习的情况下。
例如,考虑一个第一次看到并品尝到苹果的孩子。她记录了水果的颜色、质地、味道和气味。下次她看到一个苹果时,她就知道这个苹果和之前的苹果是相似的物体,因为它们具有非常相似的特征。她知道这和橙子很不一
由qxiao创建,最终由qxiao更新于
由small_q创建,最终由small_q更新于
由small_q创建,最终由small_q更新于
由small_q创建,最终由small_q更新于
在上一篇文章《初识协整》我们已经对协整有一个直观的认识,本文将进行深入理解协整。
[https://bigquant.com/codeshare/9079e4a0-c404-439a-aa78-7822fad5c86e](https://bigquant.com/codeshare/
由qxiao创建,最终由qxiao更新于
多元线性回归的应用比较普遍,本文将对其做相关介绍。
金融理论从资本资产定价模型(CAPM)发展到套利定价理论(APT),在数理统计方面就是从应用一元线性回归发展到应用多元线性回归。在实际运用中,多元线性回归比较普遍。
一元线性回归研究的是一个因变量和一个自变量的
由iquant创建,最终由iquant更新于
本文我们将讨论如何使用平均值来描述一组数据。
[https://bigquant.com/codesharev2/6b17586e-a9e3-4cfd-8b82-32f2f13eb67b](https://bigquant.com/codesharev2/6b17586e-a9e3-
由qxiao创建,最终由qxiao更新于
本文我们将讨论如何使用离散度来描述一组数据。
[https://bigquant.com/experimentshare/715478967ce0434487537359999464be](https://bigquant.com/experimentshare/715478967c
由clearyf创建,最终由clearyf更新于
第1讲:强化学习介绍
科学家Hado van Hasselt介绍强化学习课程,并解释了强化学习与人工智能的关系。
[https://www.youtube.com/watch?v=TCCjZe0y4Qc](https://www.youtube.com/watch?v=TCCjZe0y4
由qxiao创建,最终由qxiao更新于
第13讲:深度强化学习#2 研究工程师Matteo Hessel介绍了作为辅助任务的一般值函数和GVFs,并解释了如何处理算法中的缩放问题。
[https://www.youtube.com/watch?v=siDtNqlPoLk](https://www.youtube.com/watch?
由qxiao创建,最终由qxiao更新于
第12讲:深度强化学习#1 研究工程师Matteo Hessel讨论了深度RL的实际考虑和算法,包括如何使用自区分(即Jax)实现这些。
[https://www.youtube.com/watch?v=cVzvNZOBaJ4](https://www.youtube.com/watch?v=cV
由qxiao创建,最终由qxiao更新于
第8讲:规划与模型 研究工程师Matteo Hessel解释了如何学习和使用模型,包括像Dyna和蒙特卡罗树搜索(MCTS)这样的算法。
[https://www.youtube.com/watch?v=FKl8kM4finE](https://www.youtube.com/watch?v=FK
由qxiao创建,最终由qxiao更新于
本文来自于MSCI研究,原文标题为《情绪因素在不同地区的表现如何?》
关键词:MSCI | 全球投资 | 因子投资
作者:Howard Zhang
资料来源:MSCI 因子实验室。
情绪因素试图衡量不同群体对公司的看法。可以通过多种方式并从各种数据源中衡量情绪。许多情绪
由qxiao创建,最终由qxiao更新于