克隆策略
In [1]:
T.norm([1 / math.log(i + 2) for i in range(0,3)])
Out[1]:
{"Description":"实验创建于2020/9/22","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-2522:data","SourceOutputPortId":"-8572:data_1"},{"DestinationInputPortId":"-8572:input_2","SourceOutputPortId":"-304:data"},{"DestinationInputPortId":"-8976:instruments","SourceOutputPortId":"-304:data"},{"DestinationInputPortId":"-2507:features","SourceOutputPortId":"-7034:data"},{"DestinationInputPortId":"-399:instruments","SourceOutputPortId":"-1844:data"},{"DestinationInputPortId":"-18528:instruments","SourceOutputPortId":"-1844:data"},{"DestinationInputPortId":"-18535:input_1","SourceOutputPortId":"-1238:data"},{"DestinationInputPortId":"-1149:input_2","SourceOutputPortId":"-366:data_1"},{"DestinationInputPortId":"-366:input_2","SourceOutputPortId":"-374:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"-374:data"},{"DestinationInputPortId":"-1238:input_data","SourceOutputPortId":"-399:data"},{"DestinationInputPortId":"-1238:features","SourceOutputPortId":"-405:data"},{"DestinationInputPortId":"-399:features","SourceOutputPortId":"-405:data"},{"DestinationInputPortId":"-18528:features","SourceOutputPortId":"-405:data"},{"DestinationInputPortId":"-18542:features","SourceOutputPortId":"-405:data"},{"DestinationInputPortId":"-18542:input_data","SourceOutputPortId":"-18528:data"},{"DestinationInputPortId":"-1686:input_data","SourceOutputPortId":"-18535:data"},{"DestinationInputPortId":"-18535:input_2","SourceOutputPortId":"-18542:data"},{"DestinationInputPortId":"-366:input_1","SourceOutputPortId":"-1686:data"},{"DestinationInputPortId":"-8572:input_1","SourceOutputPortId":"-1686:data"},{"DestinationInputPortId":"-2522:model","SourceOutputPortId":"-2507:model"},{"DestinationInputPortId":"-24077:input_1","SourceOutputPortId":"-2522:predictions"},{"DestinationInputPortId":"-1149:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-2507:training_ds","SourceOutputPortId":"-1149:data"},{"DestinationInputPortId":"-8976:options_data","SourceOutputPortId":"-24077:data_1"}],"ModuleNodes":[{"Id":"-8572","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2):\n sd = str(input_2.read()['start_date'])\n ed = str(input_2.read()['end_date'])\n\n dt1 = input_1.read()\n dt1.set_index(\"date\", inplace=True)\n dt1 = dt1[sd:ed]\n dt1 = dt1.reset_index()\n dt1 = DataSource.write_df(dt1)\n\n return Outputs(data_1=dt1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-8572"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-8572"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-8572"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-8572","OutputType":null},{"Name":"data_2","NodeId":"-8572","OutputType":null},{"Name":"data_3","NodeId":"-8572","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-304","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-07-18","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-06-19","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-304"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-304","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"测试模块","CommentCollapsed":true},{"Id":"-7034","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nopen\nhigh\nclose\nlow\nvolume\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-7034"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7034","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1844","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-07-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-1844"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1844","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"IsPartOfPartialRun":null,"Comment":"测试模块","CommentCollapsed":true},{"Id":"-1238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":25,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-366","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2):\n sd = str(input_2.read()['start_date'])\n ed = str(input_2.read()['end_date'])\n\n dt1 = input_1.read()\n\n dt1.set_index(\"date\", inplace=True)\n dt1 = dt1[sd:ed]\n dt1 = dt1.reset_index()\n\n dt1 = DataSource.write_df(dt1)\n\n return Outputs(data_1=dt1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-366"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-366"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-366"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-366","OutputType":null},{"Name":"data_2","NodeId":"-366","OutputType":null},{"Name":"data_3","NodeId":"-366","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-374","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-07-18","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-374"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-374","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":29,"IsPartOfPartialRun":null,"Comment":"测试模块","CommentCollapsed":true},{"Id":"-399","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"bar1d_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-399"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-399"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-399","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":30,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-405","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\n# return_5\nopen\nhigh\nclose\nlow\nvolume\n\nadjust_factor=1.0\n\nreturn_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-405"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-405","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":31,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-18528","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-18528"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-18528"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-18528","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":33,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-18535","ModuleId":"BigQuantSpace.data_join.data_join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-18535"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-18535"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-18535","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":34,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-18542","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-18542"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-18542"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-18542","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":35,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-8976","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count =2\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.6\n context.options['hold_days'] =6","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days'] #账户总价值/D\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg) #账户现金\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()} #仓位\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument #账户总价值*c\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n try:\n context.order_value(context.symbol(instrument), cash)\n except:\n return ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"1000000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-8976"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-8976"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-8976"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-8976"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-8976"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-8976","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1686","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1686"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1686"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1686","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2507","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":"1000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":"20","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":"1023","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-2507"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-2507"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-2507"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-2507"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-2507","OutputType":null},{"Name":"feature_gains","NodeId":"-2507","OutputType":null},{"Name":"m_lazy_run","NodeId":"-2507","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2522","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-2522"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"-2522"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"-2522","OutputType":null},{"Name":"m_lazy_run","NodeId":"-2522","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n# shift(close, -3) / shift(open, -1)\nshift(close, -7)/close-1\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1149","ModuleId":"BigQuantSpace.data_join.data_join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-1149"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-1149"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1149","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-24077","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n predictions = input_1.read()\n\n predictions = predictions.sort_values(['date','score'],ascending = (True,False))\n\n \n data_1 = DataSource.write_df(predictions)\n\n\n return Outputs(data_1=data_1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-24077"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-24077"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-24077"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-24077","OutputType":null},{"Name":"data_2","NodeId":"-24077","OutputType":null},{"Name":"data_3","NodeId":"-24077","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"模型预测结果输出","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-8572' Position='1454,1101,200,200'/><NodePosition Node='-304' Position='1423,904,200,200'/><NodePosition Node='-7034' Position='642,1183,200,200'/><NodePosition Node='-1844' Position='977,404,200,200'/><NodePosition Node='-1238' Position='1058,649,200,200'/><NodePosition Node='-366' Position='1151,1101,200,200'/><NodePosition Node='-374' Position='1115,879,200,200'/><NodePosition Node='-399' Position='1000,551,200,200'/><NodePosition Node='-405' Position='1397,405,200,200'/><NodePosition Node='-18528' Position='1320,553,200,200'/><NodePosition Node='-18535' Position='1170,750,200,200'/><NodePosition Node='-18542' Position='1391,648,200,200'/><NodePosition Node='-8976' Position='1399,1578,200,200'/><NodePosition Node='-1686' Position='949,1013,200,200'/><NodePosition Node='-2507' Position='880,1302,200,200'/><NodePosition Node='-2522' Position='1104,1398,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='620,983,200,200'/><NodePosition Node='-1149' Position='948,1189,200,200'/><NodePosition Node='-24077' Position='1295,1483,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
In [2]:
# 本代码由可视化策略环境自动生成 2020年12月31日 13:17
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m28_run_bigquant_run(input_1, input_2):
sd = str(input_2.read()['start_date'])
ed = str(input_2.read()['end_date'])
dt1 = input_1.read()
dt1.set_index("date", inplace=True)
dt1 = dt1[sd:ed]
dt1 = dt1.reset_index()
dt1 = DataSource.write_df(dt1)
return Outputs(data_1=dt1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m28_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m18_run_bigquant_run(input_1, input_2):
sd = str(input_2.read()['start_date'])
ed = str(input_2.read()['end_date'])
dt1 = input_1.read()
dt1.set_index("date", inplace=True)
dt1 = dt1[sd:ed]
dt1 = dt1.reset_index()
dt1 = DataSource.write_df(dt1)
return Outputs(data_1=dt1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m18_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m3_run_bigquant_run(input_1, input_2, input_3):
predictions = input_1.read()
predictions = predictions.sort_values(['date','score'],ascending = (True,False))
data_1 = DataSource.write_df(predictions)
return Outputs(data_1=data_1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m3_post_run_bigquant_run(outputs):
return outputs
# 回测引擎:初始化函数,只执行一次
def m13_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count =2
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.6
context.options['hold_days'] =6
# 回测引擎:每日数据处理函数,每天执行一次
def m13_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days'] #账户总价值/D
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg) #账户现金
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.portfolio.positions.items()} #仓位
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities)])))
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument #账户总价值*c
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
try:
context.order_value(context.symbol(instrument), cash)
except:
return
# 回测引擎:准备数据,只执行一次
def m13_prepare_bigquant_run(context):
pass
m19 = M.instruments.v2(
start_date='2019-07-18',
end_date='2020-06-19',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m20 = M.input_features.v1(
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
return_5
open
high
close
low
volume
"""
)
m21 = M.instruments.v2(
start_date='2018-01-01',
end_date='2020-07-31',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m29 = M.instruments.v2(
start_date='2018-01-01',
end_date='2019-07-18',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m9 = M.advanced_auto_labeler.v2(
instruments=m29.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
# shift(close, -3) / shift(open, -1)
shift(close, -7)/close-1
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=True
)
m31 = M.input_features.v1(
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
# return_5
open
high
close
low
volume
adjust_factor=1.0
return_0"""
)
m30 = M.use_datasource.v1(
instruments=m21.data,
features=m31.data,
datasource_id='bar1d_CN_STOCK_A',
start_date='',
end_date=''
)
m25 = M.derived_feature_extractor.v3(
input_data=m30.data,
features=m31.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False,
user_functions={}
)
m33 = M.general_feature_extractor.v7(
instruments=m21.data,
features=m31.data,
start_date='',
end_date='',
before_start_days=90
)
m35 = M.derived_feature_extractor.v3(
input_data=m33.data,
features=m31.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False,
user_functions={}
)
m34 = M.data_join.v3(
input_1=m25.data,
input_2=m35.data,
on='date,instrument',
how='inner',
sort=False
)
m7 = M.dropnan.v2(
input_data=m34.data
)
m28 = M.cached.v3(
input_1=m7.data,
input_2=m29.data,
run=m28_run_bigquant_run,
post_run=m28_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m10 = M.data_join.v3(
input_1=m9.data,
input_2=m28.data_1,
on='date,instrument',
how='inner',
sort=False
)
m6 = M.stock_ranker_train.v6(
training_ds=m10.data,
features=m20.data,
learning_algorithm='排序',
number_of_leaves=30,
minimum_docs_per_leaf=1000,
number_of_trees=20,
learning_rate=0.1,
max_bins=1023,
feature_fraction=1,
data_row_fraction=1,
ndcg_discount_base=1,
m_lazy_run=False
)
m18 = M.cached.v3(
input_1=m7.data,
input_2=m19.data,
run=m18_run_bigquant_run,
post_run=m18_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m8 = M.stock_ranker_predict.v5(
model=m6.model,
data=m18.data_1,
m_lazy_run=False
)
m3 = M.cached.v3(
input_1=m8.predictions,
run=m3_run_bigquant_run,
post_run=m3_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports='',
m_cached=False
)
m13 = M.trade.v4(
instruments=m19.data,
options_data=m3.data_1,
start_date='',
end_date='',
initialize=m13_initialize_bigquant_run,
handle_data=m13_handle_data_bigquant_run,
prepare=m13_prepare_bigquant_run,
volume_limit=0,
order_price_field_buy='open',
order_price_field_sell='open',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='后复权',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
日志 91 条,错误日志
0 条
[2020-12-31 13:11:45.547061] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-12-31 13:11:45.554718] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.555891] INFO: moduleinvoker: instruments.v2 运行完成[0.008853s].
[2020-12-31 13:11:45.558491] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-12-31 13:11:45.563275] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.564509] INFO: moduleinvoker: input_features.v1 运行完成[0.006012s].
[2020-12-31 13:11:45.565990] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-12-31 13:11:45.570015] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.571244] INFO: moduleinvoker: instruments.v2 运行完成[0.005245s].
[2020-12-31 13:11:45.572746] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-12-31 13:11:45.577025] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.577839] INFO: moduleinvoker: instruments.v2 运行完成[0.005087s].
[2020-12-31 13:11:45.580262] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-12-31 13:11:45.584309] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.585632] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.005365s].
[2020-12-31 13:11:45.587141] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-12-31 13:11:45.591359] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.592202] INFO: moduleinvoker: input_features.v1 运行完成[0.005063s].
[2020-12-31 13:11:45.599887] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2020-12-31 13:11:45.627610] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.629282] INFO: moduleinvoker: use_datasource.v1 运行完成[0.029403s].
[2020-12-31 13:11:45.632967] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-12-31 13:11:45.637875] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.639134] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.006161s].
[2020-12-31 13:11:45.645857] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-12-31 13:11:45.650124] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.651043] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.005182s].
[2020-12-31 13:11:45.652612] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-12-31 13:11:45.656581] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.657415] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.004798s].
[2020-12-31 13:11:45.668048] INFO: moduleinvoker: data_join.v3 开始运行..
[2020-12-31 13:11:45.672779] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.673987] INFO: moduleinvoker: data_join.v3 运行完成[0.005951s].
[2020-12-31 13:11:45.679635] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-12-31 13:11:45.683786] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:11:45.684700] INFO: moduleinvoker: dropnan.v2 运行完成[0.005061s].
[2020-12-31 13:11:45.690335] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-31 13:11:47.488863] INFO: moduleinvoker: cached.v3 运行完成[1.798468s].
[2020-12-31 13:11:47.491875] INFO: moduleinvoker: data_join.v3 开始运行..
[2020-12-31 13:11:50.279724] INFO: moduleinvoker: data_join.v3 运行完成[2.787833s].
[2020-12-31 13:11:50.285894] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2020-12-31 13:11:50.935328] INFO: StockRanker: 特征预处理 ..
[2020-12-31 13:11:51.541753] INFO: StockRanker: prepare data: training ..
[2020-12-31 13:12:01.526524] INFO: StockRanker训练: b04302ba 准备训练: 1258471 行数
[2020-12-31 13:12:01.527859] INFO: StockRanker训练: AI模型训练,将在1258471*6=755.08万数据上对模型训练进行20轮迭代训练。预计将需要3~6分钟。请耐心等待。
[2020-12-31 13:12:01.529106] WARNING: StockRanker训练: 成为高级会员/超级会员,将获得200%~1000%的加速 [url="https://bigquant.com/account/big_member/?from=lab1" style="display: inline-block;padding: 5px 7px;border-radius: 2px;background: #F0BC41;color: white"]快速开通会员[/url]
[2020-12-31 13:12:01.548865] INFO: StockRanker训练: 正在训练 ..
[2020-12-31 13:12:01.618573] INFO: StockRanker训练: 任务状态: Pending
[2020-12-31 13:12:11.666521] INFO: StockRanker训练: 任务状态: Running
[2020-12-31 13:12:21.733808] INFO: StockRanker训练: 00:00:10.9168678, finished iteration 1
[2020-12-31 13:12:31.777817] INFO: StockRanker训练: 00:00:20.5008608, finished iteration 2
[2020-12-31 13:12:41.816942] INFO: StockRanker训练: 00:00:30.6366352, finished iteration 3
[2020-12-31 13:12:51.866974] INFO: StockRanker训练: 00:00:41.6877420, finished iteration 4
[2020-12-31 13:13:01.924452] INFO: StockRanker训练: 00:00:53.5971402, finished iteration 5
[2020-12-31 13:13:11.988834] INFO: StockRanker训练: 00:01:05.5611479, finished iteration 6
[2020-12-31 13:13:32.119082] INFO: StockRanker训练: 00:01:16.9866542, finished iteration 7
[2020-12-31 13:13:42.165181] INFO: StockRanker训练: 00:01:30.8395452, finished iteration 8
[2020-12-31 13:13:52.216712] INFO: StockRanker训练: 00:01:44.2682150, finished iteration 9
[2020-12-31 13:14:12.321296] INFO: StockRanker训练: 00:01:57.6816440, finished iteration 10
[2020-12-31 13:14:22.363574] INFO: StockRanker训练: 00:02:10.0725778, finished iteration 11
[2020-12-31 13:14:32.409337] INFO: StockRanker训练: 00:02:21.9431363, finished iteration 12
[2020-12-31 13:14:42.448487] INFO: StockRanker训练: 00:02:34.3292086, finished iteration 13
[2020-12-31 13:14:52.497275] INFO: StockRanker训练: 00:02:46.0374628, finished iteration 14
[2020-12-31 13:15:12.597687] INFO: StockRanker训练: 00:02:59.1933865, finished iteration 15
[2020-12-31 13:15:22.643268] INFO: StockRanker训练: 00:03:14.0376149, finished iteration 16
[2020-12-31 13:15:42.726648] INFO: StockRanker训练: 00:03:31.0202407, finished iteration 17
[2020-12-31 13:15:52.774613] INFO: StockRanker训练: 00:03:45.6277454, finished iteration 18
[2020-12-31 13:16:12.904470] INFO: StockRanker训练: 00:04:01.0998271, finished iteration 19
[2020-12-31 13:16:22.951199] INFO: StockRanker训练: 00:04:17.0127793, finished iteration 20
[2020-12-31 13:16:32.990594] INFO: StockRanker训练: 任务状态: Succeeded
[2020-12-31 13:16:33.921373] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[283.635463s].
[2020-12-31 13:16:33.924059] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-31 13:16:35.693356] INFO: moduleinvoker: cached.v3 运行完成[1.769252s].
[2020-12-31 13:16:35.850910] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2020-12-31 13:16:36.238527] INFO: StockRanker预测: /data ..
[2020-12-31 13:16:38.459327] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[2.608386s].
[2020-12-31 13:16:38.461567] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-31 13:16:39.811496] INFO: moduleinvoker: cached.v3 运行完成[1.349884s].
[2020-12-31 13:16:40.867643] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-12-31 13:16:40.872155] INFO: backtest: biglearning backtest:V8.4.2
[2020-12-31 13:16:40.873572] INFO: backtest: product_type:stock by specified
[2020-12-31 13:16:40.975781] INFO: moduleinvoker: cached.v2 开始运行..
[2020-12-31 13:16:40.981223] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:16:40.982289] INFO: moduleinvoker: cached.v2 运行完成[0.006516s].
[2020-12-31 13:16:41.982916] INFO: algo: TradingAlgorithm V1.7.0
[2020-12-31 13:16:42.984361] INFO: algo: trading transform...
[2020-12-31 13:16:45.409653] INFO: Performance: Simulated 225 trading days out of 225.
[2020-12-31 13:16:45.410942] INFO: Performance: first open: 2019-07-18 09:30:00+00:00
[2020-12-31 13:16:45.412371] INFO: Performance: last close: 2020-06-19 15:00:00+00:00
[2020-12-31 13:16:52.079688] INFO: moduleinvoker: backtest.v8 运行完成[11.212059s].
[2020-12-31 13:16:52.080929] INFO: moduleinvoker: trade.v4 运行完成[12.263275s].
In [3]:
108
Out[3]:
In [ ]:
克隆策略
In [14]:
T.norm([1 / math.log(i + 2) for i in range(0,3)])
Out[14]:
{"Description":"实验创建于2020/9/22","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-2522:data","SourceOutputPortId":"-8572:data_1"},{"DestinationInputPortId":"-8976:history_ds","SourceOutputPortId":"-8572:data_1"},{"DestinationInputPortId":"-8572:input_2","SourceOutputPortId":"-304:data"},{"DestinationInputPortId":"-2507:features","SourceOutputPortId":"-7034:data"},{"DestinationInputPortId":"-399:instruments","SourceOutputPortId":"-1844:data"},{"DestinationInputPortId":"-18528:instruments","SourceOutputPortId":"-1844:data"},{"DestinationInputPortId":"-18535:input_1","SourceOutputPortId":"-1238:data"},{"DestinationInputPortId":"-1149:input_2","SourceOutputPortId":"-366:data_1"},{"DestinationInputPortId":"-366:input_2","SourceOutputPortId":"-374:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"-374:data"},{"DestinationInputPortId":"-1238:input_data","SourceOutputPortId":"-399:data"},{"DestinationInputPortId":"-1238:features","SourceOutputPortId":"-405:data"},{"DestinationInputPortId":"-399:features","SourceOutputPortId":"-405:data"},{"DestinationInputPortId":"-18528:features","SourceOutputPortId":"-405:data"},{"DestinationInputPortId":"-18542:features","SourceOutputPortId":"-405:data"},{"DestinationInputPortId":"-18542:input_data","SourceOutputPortId":"-18528:data"},{"DestinationInputPortId":"-1686:input_data","SourceOutputPortId":"-18535:data"},{"DestinationInputPortId":"-18535:input_2","SourceOutputPortId":"-18542:data"},{"DestinationInputPortId":"-366:input_1","SourceOutputPortId":"-1686:data"},{"DestinationInputPortId":"-8572:input_1","SourceOutputPortId":"-1686:data"},{"DestinationInputPortId":"-2522:model","SourceOutputPortId":"-2507:model"},{"DestinationInputPortId":"-24077:input_1","SourceOutputPortId":"-2522:predictions"},{"DestinationInputPortId":"-1149:input_1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-2507:training_ds","SourceOutputPortId":"-1149:data"},{"DestinationInputPortId":"-8976:options_data","SourceOutputPortId":"-24077:data_1"}],"ModuleNodes":[{"Id":"-8572","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2):\n sd = str(input_2.read()['start_date'])\n ed = str(input_2.read()['end_date'])\n\n dt1 = input_1.read()\n dt1.set_index(\"date\", inplace=True)\n dt1 = dt1[sd:ed]\n dt1 = dt1.reset_index()\n dt1 = DataSource.write_df(dt1)\n\n return Outputs(data_1=dt1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-8572"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-8572"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-8572"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-8572","OutputType":null},{"Name":"data_2","NodeId":"-8572","OutputType":null},{"Name":"data_3","NodeId":"-8572","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-304","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-07-18","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-06-19","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-304"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-304","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":19,"IsPartOfPartialRun":null,"Comment":"测试模块","CommentCollapsed":true},{"Id":"-7034","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nopen\nhigh\nclose\nlow\nvolume\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-7034"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-7034","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1844","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-07-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-1844"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1844","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"IsPartOfPartialRun":null,"Comment":"测试模块","CommentCollapsed":true},{"Id":"-1238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":25,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-366","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2):\n sd = str(input_2.read()['start_date'])\n ed = str(input_2.read()['end_date'])\n\n dt1 = input_1.read()\n\n dt1.set_index(\"date\", inplace=True)\n dt1 = dt1[sd:ed]\n dt1 = dt1.reset_index()\n\n dt1 = DataSource.write_df(dt1)\n\n return Outputs(data_1=dt1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-366"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-366"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-366"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-366","OutputType":null},{"Name":"data_2","NodeId":"-366","OutputType":null},{"Name":"data_3","NodeId":"-366","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":28,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-374","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2018-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-07-18","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-374"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-374","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":29,"IsPartOfPartialRun":null,"Comment":"测试模块","CommentCollapsed":true},{"Id":"-399","ModuleId":"BigQuantSpace.use_datasource.use_datasource-v1","ModuleParameters":[{"Name":"datasource_id","Value":"bar1d_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-399"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-399"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-399","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":30,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-405","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\n# return_5\nopen\nhigh\nclose\nlow\nvolume\n\nadjust_factor=1.0\n\nreturn_0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-405"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-405","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":31,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-18528","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-18528"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-18528"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-18528","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":33,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-18535","ModuleId":"BigQuantSpace.data_join.data_join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-18535"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-18535"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-18535","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":34,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-18542","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-18542"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-18542"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-18542","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":35,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-8976","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count =2\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.6\n context.options['hold_days'] =6","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.options['hold_days'] #账户总价值/D\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg) #账户现金\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.portfolio.positions.items()} #仓位\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.portfolio.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities)])))\n\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <0:\n break\n\n # 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument #账户总价值*c\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n try:\n context.order_value(context.symbol(instrument), cash)\n except:\n return ","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":"1000000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"后复权","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-8976"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-8976"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-8976"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-8976"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-8976"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-8976","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":13,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1686","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-1686"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-1686"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1686","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2507","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":"1000","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":"20","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":"1023","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-2507"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-2507"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-2507"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-2507"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-2507","OutputType":null},{"Name":"feature_gains","NodeId":"-2507","OutputType":null},{"Name":"m_lazy_run","NodeId":"-2507","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2522","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"-2522"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"-2522"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"-2522","OutputType":null},{"Name":"m_lazy_run","NodeId":"-2522","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\n# shift(close, -3) / shift(open, -1)\nshift(close, -7)/close-1\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-1149","ModuleId":"BigQuantSpace.data_join.data_join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-1149"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-1149"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-1149","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-24077","ModuleId":"BigQuantSpace.cached.cached-v3","ModuleParameters":[{"Name":"run","Value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n predictions = input_1.read()\n\n predictions = predictions.sort_values(['date','score'],ascending = (True,False))\n\n \n data_1 = DataSource.write_df(predictions)\n\n\n return Outputs(data_1=data_1)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"post_run","Value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"input_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"params","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"output_ports","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_1","NodeId":"-24077"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_2","NodeId":"-24077"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_3","NodeId":"-24077"}],"OutputPortsInternal":[{"Name":"data_1","NodeId":"-24077","OutputType":null},{"Name":"data_2","NodeId":"-24077","OutputType":null},{"Name":"data_3","NodeId":"-24077","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"模型预测结果输出","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-8572' Position='1454,1101,200,200'/><NodePosition Node='-304' Position='1423,904,200,200'/><NodePosition Node='-7034' Position='642,1183,200,200'/><NodePosition Node='-1844' Position='977,404,200,200'/><NodePosition Node='-1238' Position='1058,649,200,200'/><NodePosition Node='-366' Position='1151,1101,200,200'/><NodePosition Node='-374' Position='1115.6160888671875,879.4107055664062,200,200'/><NodePosition Node='-399' Position='1000,551,200,200'/><NodePosition Node='-405' Position='1397,405,200,200'/><NodePosition Node='-18528' Position='1320,553,200,200'/><NodePosition Node='-18535' Position='1170,750,200,200'/><NodePosition Node='-18542' Position='1391,648,200,200'/><NodePosition Node='-8976' Position='1399,1578,200,200'/><NodePosition Node='-1686' Position='949,1013,200,200'/><NodePosition Node='-2507' Position='880,1302,200,200'/><NodePosition Node='-2522' Position='1104,1398,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='620,983,200,200'/><NodePosition Node='-1149' Position='948,1189,200,200'/><NodePosition Node='-24077' Position='1295,1483,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
In [15]:
# 本代码由可视化策略环境自动生成 2020年12月31日 13:11
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m28_run_bigquant_run(input_1, input_2):
sd = str(input_2.read()['start_date'])
ed = str(input_2.read()['end_date'])
dt1 = input_1.read()
dt1.set_index("date", inplace=True)
dt1 = dt1[sd:ed]
dt1 = dt1.reset_index()
dt1 = DataSource.write_df(dt1)
return Outputs(data_1=dt1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m28_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m18_run_bigquant_run(input_1, input_2):
sd = str(input_2.read()['start_date'])
ed = str(input_2.read()['end_date'])
dt1 = input_1.read()
dt1.set_index("date", inplace=True)
dt1 = dt1[sd:ed]
dt1 = dt1.reset_index()
dt1 = DataSource.write_df(dt1)
return Outputs(data_1=dt1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m18_post_run_bigquant_run(outputs):
return outputs
# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
def m3_run_bigquant_run(input_1, input_2, input_3):
predictions = input_1.read()
predictions = predictions.sort_values(['date','score'],ascending = (True,False))
data_1 = DataSource.write_df(predictions)
return Outputs(data_1=data_1)
# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
def m3_post_run_bigquant_run(outputs):
return outputs
# 回测引擎:初始化函数,只执行一次
def m13_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count =2
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.6
context.options['hold_days'] =6
# 回测引擎:每日数据处理函数,每天执行一次
def m13_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days'] #账户总价值/D
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg) #账户现金
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.portfolio.positions.items()} #仓位
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities)])))
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument #账户总价值*c
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
try:
context.order_value(context.symbol(instrument), cash)
except:
return
# 回测引擎:准备数据,只执行一次
def m13_prepare_bigquant_run(context):
pass
m19 = M.instruments.v2(
start_date='2019-07-18',
end_date='2020-06-19',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m20 = M.input_features.v1(
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
return_5
open
high
close
low
volume
"""
)
m21 = M.instruments.v2(
start_date='2018-01-01',
end_date='2020-07-31',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m29 = M.instruments.v2(
start_date='2018-01-01',
end_date='2019-07-18',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m9 = M.advanced_auto_labeler.v2(
instruments=m29.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
# shift(close, -3) / shift(open, -1)
shift(close, -7)/close-1
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.SHA',
drop_na_label=True,
cast_label_int=True
)
m31 = M.input_features.v1(
features="""
# #号开始的表示注释,注释需单独一行
# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
# return_5
open
high
close
low
volume
adjust_factor=1.0
return_0"""
)
m30 = M.use_datasource.v1(
instruments=m21.data,
features=m31.data,
datasource_id='bar1d_CN_STOCK_A',
start_date='',
end_date=''
)
m25 = M.derived_feature_extractor.v3(
input_data=m30.data,
features=m31.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False,
user_functions={}
)
m33 = M.general_feature_extractor.v7(
instruments=m21.data,
features=m31.data,
start_date='',
end_date='',
before_start_days=90
)
m35 = M.derived_feature_extractor.v3(
input_data=m33.data,
features=m31.data,
date_col='date',
instrument_col='instrument',
drop_na=True,
remove_extra_columns=False,
user_functions={}
)
m34 = M.data_join.v3(
input_1=m25.data,
input_2=m35.data,
on='date,instrument',
how='inner',
sort=False
)
m7 = M.dropnan.v2(
input_data=m34.data
)
m28 = M.cached.v3(
input_1=m7.data,
input_2=m29.data,
run=m28_run_bigquant_run,
post_run=m28_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m10 = M.data_join.v3(
input_1=m9.data,
input_2=m28.data_1,
on='date,instrument',
how='inner',
sort=False
)
m6 = M.stock_ranker_train.v6(
training_ds=m10.data,
features=m20.data,
learning_algorithm='排序',
number_of_leaves=30,
minimum_docs_per_leaf=1000,
number_of_trees=20,
learning_rate=0.1,
max_bins=1023,
feature_fraction=1,
data_row_fraction=1,
ndcg_discount_base=1,
m_lazy_run=False
)
m18 = M.cached.v3(
input_1=m7.data,
input_2=m19.data,
run=m18_run_bigquant_run,
post_run=m18_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports=''
)
m8 = M.stock_ranker_predict.v5(
model=m6.model,
data=m18.data_1,
m_lazy_run=False
)
m3 = M.cached.v3(
input_1=m8.predictions,
run=m3_run_bigquant_run,
post_run=m3_post_run_bigquant_run,
input_ports='',
params='{}',
output_ports='',
m_cached=False
)
m13 = M.trade.v4(
options_data=m3.data_1,
history_ds=m18.data_1,
start_date='',
end_date='',
initialize=m13_initialize_bigquant_run,
handle_data=m13_handle_data_bigquant_run,
prepare=m13_prepare_bigquant_run,
volume_limit=0,
order_price_field_buy='open',
order_price_field_sell='open',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='后复权',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.SHA'
)
日志 63 条,错误日志
0 条
[2020-12-31 13:09:02.880278] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-12-31 13:09:02.884939] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:02.885898] INFO: moduleinvoker: instruments.v2 运行完成[0.005621s].
[2020-12-31 13:09:02.887129] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-12-31 13:09:02.891149] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:02.892051] INFO: moduleinvoker: input_features.v1 运行完成[0.004915s].
[2020-12-31 13:09:02.893983] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-12-31 13:09:02.899586] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:02.900621] INFO: moduleinvoker: instruments.v2 运行完成[0.006632s].
[2020-12-31 13:09:02.902204] INFO: moduleinvoker: instruments.v2 开始运行..
[2020-12-31 13:09:02.906076] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:02.907179] INFO: moduleinvoker: instruments.v2 运行完成[0.004965s].
[2020-12-31 13:09:02.909452] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2020-12-31 13:09:02.914030] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:02.915208] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.005752s].
[2020-12-31 13:09:02.917140] INFO: moduleinvoker: input_features.v1 开始运行..
[2020-12-31 13:09:02.922067] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:02.923009] INFO: moduleinvoker: input_features.v1 运行完成[0.00587s].
[2020-12-31 13:09:02.924474] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2020-12-31 13:09:02.930363] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:02.931721] INFO: moduleinvoker: use_datasource.v1 运行完成[0.007237s].
[2020-12-31 13:09:02.933838] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-12-31 13:09:02.993738] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:02.994927] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.061085s].
[2020-12-31 13:09:03.000646] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2020-12-31 13:09:03.006866] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.008013] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.007366s].
[2020-12-31 13:09:03.010396] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2020-12-31 13:09:03.034109] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.035536] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.025131s].
[2020-12-31 13:09:03.038603] INFO: moduleinvoker: data_join.v3 开始运行..
[2020-12-31 13:09:03.095704] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.097177] INFO: moduleinvoker: data_join.v3 运行完成[0.058572s].
[2020-12-31 13:09:03.099423] INFO: moduleinvoker: dropnan.v2 开始运行..
[2020-12-31 13:09:03.104670] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.105822] INFO: moduleinvoker: dropnan.v2 运行完成[0.006401s].
[2020-12-31 13:09:03.112606] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-31 13:09:03.119057] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.120238] INFO: moduleinvoker: cached.v3 运行完成[0.007632s].
[2020-12-31 13:09:03.122277] INFO: moduleinvoker: data_join.v3 开始运行..
[2020-12-31 13:09:03.126593] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.128012] INFO: moduleinvoker: data_join.v3 运行完成[0.005724s].
[2020-12-31 13:09:03.130380] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2020-12-31 13:09:03.327281] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.371963] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.241571s].
[2020-12-31 13:09:03.374721] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-31 13:09:03.378926] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.379883] INFO: moduleinvoker: cached.v3 运行完成[0.005165s].
[2020-12-31 13:09:03.382136] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2020-12-31 13:09:03.391029] INFO: moduleinvoker: 命中缓存
[2020-12-31 13:09:03.391997] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.009864s].
[2020-12-31 13:09:03.394012] INFO: moduleinvoker: cached.v3 开始运行..
[2020-12-31 13:09:04.197484] INFO: moduleinvoker: cached.v3 运行完成[0.803444s].
[2020-12-31 13:09:04.630130] INFO: moduleinvoker: backtest.v8 开始运行..
[2020-12-31 13:09:04.636655] INFO: backtest: biglearning backtest:V8.4.2
[2020-12-31 13:09:04.638040] INFO: backtest: product_type:stock by specified
[2020-12-31 13:09:05.242599] INFO: algo: TradingAlgorithm V1.7.0
[2020-12-31 13:09:05.609837] INFO: algo: trading transform...
[2020-12-31 13:09:08.994374] INFO: Performance: Simulated 225 trading days out of 225.
[2020-12-31 13:09:08.995636] INFO: Performance: first open: 2019-07-18 09:30:00+00:00
[2020-12-31 13:09:08.996841] INFO: Performance: last close: 2020-06-19 15:00:00+00:00
[2020-12-31 13:09:11.652819] INFO: moduleinvoker: backtest.v8 运行完成[7.022697s].
[2020-12-31 13:09:11.654315] INFO: moduleinvoker: trade.v4 运行完成[7.454843s].
In [16]:
108
Out[16]:
In [ ]: