机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

ChatGTP教程 - OpenAI语言模型的全面指南

用ChatGPT生成的ChatGPT教程

更新时间:2023-02-03 21:30

机器学习在量化领域中的应用优势

随着交易数据量越来越大,金融领域的各种应用已经验证了使用人工智能可以更好地进行投资或业务决策,也越来越多人相信人工智能技术在金融领域的应用前景。人工智能提供了一种适用于从个人数据到业务流程的高效数据分析工具。 与此同时,越来越多金融机构开始使用机器学习方法,以期在市场竞争中赢得优势。量化投资机构逐渐抛弃传统的分析方法,转而使用机器学习算法预测市场走势和选择投资组合。 与传统投资方式相比,量化投资方式具有更高效率及准确性。量化投资是一种基于计算机系统而生成的投资策略选择方法,可以对数学模型进行监理,在实现交易理念活动过程中构建更为完善规范的量化投资评价体系。在对模型进行监理的基础上,再对历史数据

更新时间:2023-02-01 15:30

用k-近邻分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7f7021993a9f40149189be939e15c882

\

更新时间:2023-01-03 07:44

股票池初选 老是报错 concept

问题

股票池初选 老是报错 concept 求大佬解释

{w:100}

解答

参见此链接的答复

https://bigquant.com/wiki/doc/gupiao-wenti-RH6JMkfTP0

更新时间:2022-12-20 14:20

K近邻分类算法选股,提示错误

问题

{w:100} {w:100}请问这个错误是什么原因

解答

筛选过后的classes_prob_0没有数据,则索引[0]找不到相关的数据

更新时间:2022-12-20 14:20

为什么按机器学习的教学视频报错?

https://www.bilibili.com/video/BV1Wf4y1271W?p=2&vd_source=a32aa75ee6253e50dec69457cee613a4

[https://bigquant.com/experimentshare/c320bbf476b248b9904a5ca2d890ef96](https://bigquant.com/experimentshare/c320b

更新时间:2022-12-20 14:20

能否拿到GBDT的特征重要性

问题

能否拿到GBDT的特征重要性

\

解答

和随机森林去提取特征重要性一样

更新时间:2022-12-20 14:20

遗传规划

问题

https://bigquant.com/experimentshare/98c1a63396fa4a7e9b2bc1e552b124ae

\

更新时间:2022-12-20 14:20

模型

模型板块包含了AI算法模型,多因子模型等一些研究内容。

更新时间:2022-12-06 14:42

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/41ba8c41f99346a6872f3ecac3a50c80

\

更新时间:2022-11-20 03:34

AI+涨停板特征提取

策略案例

https://bigquant.com/experimentshare/6ac00fc386f74acb886b8168d7809b98

\

更新时间:2022-11-20 03:34

利用新的列表排序学习法构建多空组合

Constructing Long-Short Stock Portfolio with A New Listwise Learn-to-Rank Algorithm

作者:Xin Zhang, et al.

出处:Quantitative Finance, 2021-07

摘要:随着机器学习的快速发展,因子策略在行业中得到越来越广泛的应用。在算法中输入多因子可以进行横截面收益预测,并进一步用于构建多空组合。大量现有研究使用排序学习法来预测股票排名,基于此,作者提出了一个新的列表排序学习损失函数来进一步强调排名的头部和尾部。本文的损失函数基于多空策略,具有内在的移位不变性,是对ListM

更新时间:2022-11-20 03:34

多数据源预测股价走势:股票越活跃,准确性就越高

Forecasting Stock Price Movements with Multiple Data Sources: Evidence from Stock Market in China

作者:Zhongbao Zhou, et al.

出处:Physica A, 2020-03

摘要:作者使用了多种异构数据源来预测股价的走势,包括历史交易数据、技术指标、股票发布、新闻以及百度指数。作者主要关注活跃和不活跃的股票的独特预测模式,并且研究了单只股票在不同活动水平下支持向量机的预测能力。作者根据上述5种异构数据源,共构建了14种数据源组合,并且用了1天、2天、3天三种预测范围,从

更新时间:2022-11-20 03:34

用传统框架测试机器学习-GBDT算法

策略案例

https://bigquant.com/experimentshare/44cc116a1dad4c37983b9be35da208ee

\

更新时间:2022-11-20 03:34

高年化收益-主力资金AI策略模型分享

策略案例

https://bigquant.com/experimentshare/2d9488a9b36342898a1431052bc78d08

\

更新时间:2022-11-20 03:34

lighGBM训练出错

https://bigquant.com/experimentshare/ada6ffe2d3f94a6f9e0ccac744524604

\

更新时间:2022-11-09 01:23

自定义运行支持多个模块的参数吗?

https://bigquant.com/wiki/doc/mokuai-jianjie-tzXIdkJnBW

更新时间:2022-11-09 01:23

请问如何将基本面特征结合进分钟线高频回测的过程中,作为股票池筛选的一部分?

如题

更新时间:2022-11-09 01:23

机器学习驱动的基本面量化投资

引言

机器学习在股价预测中展现出明显的优势,国内外学者在这一领域已经进行了大量的研究。本文首先运用六种机器学习算法与基准RW模型和现有五种模型进行对比,对比结果发现机器学习模型,尤其是非线性机器学习模型具有较好对预测精确性。其次,考虑到基于基本面分析的股价预测方法可以实现对中长期股票的预测,本文分析了基本面量化投资在长期股票预测中的应用与模型性能对比。最后,本文将基本面量化投资应用于我国A股市场进行适用性分析和模型绩效分析。

机器学习模型预测有效性的验证

模型架构

主要采用六种机器学习模型,包括三种线性机器学习和三种非线性机器学习模型。

  • **线

更新时间:2022-11-07 06:10

优秀开发者分享


\

更新时间:2022-11-03 08:32

中国股票市场中的机器学习

Machine Learning in the Chinese Stock Market

作者:Leippold M, et al.

出处:Journal of Financial Economics, 2021-07

摘要

作者通过使用各种机器学习算法建立和分析一套全面的收益预测因子组合。与以前对美国市场的研究相比,流动性成为中国市场最重要的预测因子,这使作者仔细研究了交易成本的影响。中国市场中散户投资者的主导地位积极地影响了短期的可预测性,特别是对小票。中国市场区别于美国市场的另一个特点是大票和国有企业在较长时间内的高可预测性。

正文

[/wiki/stati

更新时间:2022-11-02 09:19

微博情绪与股票回报:时频观点

Weibo sentiments and stock return :A time-frequency view

作者:Yingying Xu, Zhixin Liu, et al.

出处:PLOS ONE, 2017-06

摘要

本研究为社交媒体情绪与中国股市之间的关系提供了新的见解。基于机器学习,我们将新浪微博上发布的微博内容分为愤怒、厌恶、恐惧、喜悦和悲伤这五种情绪。利用小波分析,作者发现情绪与股票收益之间存在着密切的正相关关系,两者具有频率和时变特征。自2014年10月以来,在不到十个交易日的中高频率交易下,股票收益率出现明显波动时,这五种情绪表现出与股票收益率的正

更新时间:2022-11-02 09:14

量化行业有何优势?发展空间广阔!

1.科学的投资体系。基于处理后的各类数据,通过数学建模和回测将市场信息进行量化,从数据中解读背后蕴含的市场规律,捕捉价格波动过程中的交易机会,真正做到可追溯、易复盘、能验证、迭代快。

2.应用前沿技术。大数据时代,积极应用机器学习、深度学习等人工智能新兴技术,以实现强大的信息搜集与处理能力,及时快速地跟踪市场变化,不断捕捉市场上能够提供超额收益的投资机会。

3.剥离情绪影响。严格执行量化投资模型给出的投资建议,决策信息透明度高、纪律性强,能有效规避人类主观认知偏差以及克服情绪对决策的影响,准确客观评价投资机会,降低管理人的道德风险。

4.统观信息全局。通过对尽可能全面、完整的海量

更新时间:2022-10-27 03:25

机器学习应用于量化领域,还有哪些问题和挑战?

当前,越来越多的金融机构开始使用机器学习方法,以期在市场竞争中赢得优势。而量化投资机构也逐步抛弃传统的分析方法,转而使用机器学习算法预测市场走势和选择投资组合。

而机器学习的优势在于,能够提供非线性关系的模糊处理,弥补了人脑思维模式,同时利用相关算法,可以大幅提高数据挖掘、处理效率。则借用机器学习,量化投资策略会变得更加丰富。

与此同时,在量化领域应用机器学习算法,仍然存在一些问题和挑战。那么,你在实践过程中,都碰到哪些问题呢?

更新时间:2022-10-14 09:36

MSCI-机器学习各模型性能比较:树模型、随机森林、神经网络与22个因子有效性

本文由BigQuant翻译来自于MSCI研究,原文标题为《机器学习因子:在线性因子模型中捕捉非线性》

作者:George Bonne, Jun Wang, Howard Zhang

发表时间:2021年3月

概要

虽然机器学习(机器学习)算法已经存在了几十年,但最近它们在包括金融在内的许多领域受到了越来越多的关注,尤其是在解释资产回报的应用上。虽然线性因子模型多年来一直是理解风险敞口、风险和投资组合表现的重要工具,但没有哪一种模型是一成不变的,即因子敞口和回报之间的关系必须是线性的。

在这里,我们研究了在去除线性成分后,机器学习算法在多大程度上可以检测因子暴露和安全回报之间的关

更新时间:2022-10-14 01:29

分页第1页第2页第3页第4页第5页第14页
{link}