监督学习

监督学习在金融领域的应用,实质上是通过训练模型以识别并利用历史数据中的模式来预测未来结果的过程。这种方法依赖于大量标记的数据点,例如股票价格、交易量、信用评分等,以建立一个能够理解和解释这些数据的函数。对历徃数据的深入分析和模式识别有助于制定更准确的市场策略、风险评估和管理决策。例如,通过监督学习算法,金融机构能够构建信用评分模型,有效地预测借款人的违约风险;或者开发股票价格预测模型,为投资者提供基于数据驱动的投资建议。监督学习的强大之处在于它能够从过去的经验中学习,并不断优化自身的预测能力,从而为金融行业提供更精准、更可靠的决策支持。

AI量化技术

AI量化领域结合了人工智能(AI)、机器学习(ML)以及量化金融的技术和方法。这一领域的目标是使用算法和计算模型来分析大量金融数据,从而做出投资决策或提高交易效率。

一些在AI量化领域重要技术和方法,以及在金融领域的应用:

  1. 机器学习算法:机器学习算法是AI量化领域的核心。它们包括监督学习、非监督学习和强化学习。
    • 监督学习,如支持向量机(SVM)、神经网络、决策树等,用于预测或分类任务,如股价预测、信用评分。
    • 非监督学习,如聚类、主成分分析(PCA)等,用于发现数据中的模式和关系,如市场细分、异常检测。
    • 强化学习,如Q学习

更新时间:2024-09-05 03:12

机器学习之“监督学习”

1936 年 Fisher 提出线性判别分析(Linear Discriminant Analysis),是一种有监督的数据降维与分类算法。

1950 年左右,朴素贝叶斯分类器(NaiveBayes Classifier),基于最基本的贝叶斯理论,假设特征相互独立,根据贝叶斯公式利用先验信息去计算样本被分类到每一个类别的概率。

1958 年感知机(Perceptron),神经网络的前身,结合了当时对脑细胞的研究以及机器学习的成果,首次被提出并用于图像识别。

同年,逻辑回归(Logistic Regression),用广义线性模型去预测样本被分类到每个类别的概率。

1967 年 K 近

更新时间:2024-05-20 03:21

Machine Learning is Fun! — 全世界最简单的机器学习入门指南

你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!

这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放弃,希望能有人给出一个更直观的解释。本文就是你们想要的东西。

本文的写作目标是让任何人都能看懂,这意味着文中有大量的概括。但是那又如何呢?只要能让读者对机器学习更感兴趣,这篇文章的任务也就完成了。

什么是机器学习?

机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Gene

更新时间:2024-05-20 03:18

【历史文档】因子构建与标注-自定义标注

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 06:20

Tabnet如何实现分类任务

https://bigquant.com/experimentshare/75aff243f241447da1d1994ed9d29c44

如何实现分类任务啊,怎么在原有策略上修改

更新时间:2023-10-09 07:05

回归问题的标签设置

问题

回归问题的标签设置

\

更新时间:2023-06-01 02:13

深度学习的方法介绍及金融领域应用实例-长江证券-20180122

摘要

深度学习介绍及应用案例

本篇报告将焦点放在深度学习上,介绍了深度学习的常用算法和在金融领域上可以运用的场景,并给出了两个具体的案例。

监督类方法介绍

监督的深度学习算法基于神经网络结构,这种系统一般由多个层堆叠组成特定神经网络,不同算法的差别来自层的组成结构及层与层之间的关系。深度神经网络在普通神经网络的基础上,增加隐含层的数量,学习输入与输出之间的非线性关系。循环神经网络随数据的输入生成动态模型,以捕捉之前的输出和当前输出的关系,并衍生出了如LSTM的结构,解决遗忘较长时间信息的问题。卷积神经网络主要通过卷积和池化的方式连接每层的输入和输出,达到降低数据维

更新时间:2022-08-31 01:53

监督学习的方法介绍及金融领域应用实例-长江证券-20170727

摘要

机器学习系列报告

本系列报告试图系统全面性的介绍各种不同的机器学习方法,并且结合具体的在投资研究领域应用实例、交易策略及code示例,说明其应用情景和实现方法。机器学习的方法可以分为以下几类:监督学习、无监督学习、深度学习及其他机器学习方法(例如强化学习),对应到具体的模型上数量则更是繁多,目前大部分机器学习模型并未广泛的应用在投研领域,因此本系列主要偏重于在投研领域有应用潜力的模型及方法。此篇将以介绍监督学习方法为主

监督学习模型之回归类模型及其应用

与普通线性回归不同,监督学习中的惩罚回归模型和非参数回归,可以分别用于处理输入变量中存在大量线性相关性关系

更新时间:2022-08-31 01:52

【华泰金工】人工智能59:强化学习初探与DQN择时

摘 要

人工智能系列之59:强化学习初探与DQN择时

本文介绍强化学习基础概念和经典算法,并构建股指日频择时策略。有别于传统监督学习对真实标签的拟合,强化学习不存在标准答案,而是针对长期目标的试错学习。其核心思想是个体通过与环境交互,从反馈的奖励信号中进行学习,数学上使用马尔可夫决策过程刻画。本文围绕基于价值的方法和基于策略的方法两个方向,依次介绍蒙特卡洛、时序差分、Sarsa、Q学习、DQN、策略梯度、REINFORCE、演员-评委算法。使用DQN构建上证指数择时策略,原始超参数样本外2017年至2022年6月年化超额收益率18.2%,夏普比率1.31,年均调仓42.0次,

更新时间:2022-08-02 02:59

xgboost自定义目标和评估函数

https://bigquant.com/experimentshare/648ff204e53d44059c2d726e9219cfa3

\

更新时间:2022-04-21 06:21

基于 TRA 和最优运输学习多种股票交易模式

摘要

股票预测是量化投资中最为关键的任务。近年来,深度神经网络因其强大的表征学习能力和非线性建模能力,逐渐成为股票预测的主流方法。现有的预测方法均假设股票数据符合独立同分布(IID)且采用单一模型有监督地对股票数据建模。但实际上,股票数据通常会包含多种不同甚至对立的分布(Non-IID),比如动量(历史收益率高的股票未来收益率会高)和反转(历史收益率低的股票未来收益率会高)这两种分布形式同时存在于股票数据中,但是已有的模型并不具备同时学习股票数据中多种分布的能力。

因此,微软亚洲研究院的研究员们提出了 Temporal Routing Adaptor (TRA),来赋予已有模型学习多

更新时间:2021-11-26 08:24

华泰人工智能系列之四:人工智能选股之朴素贝叶斯模型-华泰证券-20170817

摘要

本报告对朴素贝叶斯模型及线性判别分析、二次判别分析进行系统测试

“生成模型”是机器学习中监督学习方法的一类。与“判别模型”学习决策函数和条件概率不同,生成模型主要学习的是联合概率分布𝑃(𝑋,𝑌)。本文中,我们从朴素贝叶斯算法入手,分析比较了几种常见的生成模型(包括线性判别分析和二次判别分析)应用于多因子选股的异同,希望对本领域的投资者产生有实用意义的参考价值。

朴素贝叶斯模型构建细节:月频滚动训练,结合基于时间序列的交叉验证

朴素贝叶斯模型的构建包括特征和标签提取、特征预处理、训练集合成和滚动训练等步骤。我们的模型设置为月频换仓,在每个月月底重新训练并

更新时间:2021-11-26 07:28

机器学习常见算法

导语

机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。

回归算法

在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归逻辑回归

线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是

更新时间:2021-08-18 06:37

分页第1页
{link}