策略回测

策略回测在金融领域中,是一种对历史数据应用特定投资策略以评估其性能的过程。这种方法通过模拟真实市场环境,使投资者能够观察策略在不同时间周期和各种市场条件下的盈利能力和风险水平。这是一种重要的工具,可以帮助投资者在实施新策略之前了解潜在的收益和风险,优化投资策略,提高未来决策的准确性和效率。有效的策略回测能够为投资者提供信心,并为实盘交易提供有价值的参考。

设置交易费率和价格_new

导语

AI量化策略开发第六步:回测教程中,我们介绍了Trade回测/模拟交易模块的重要函数和策略构建的基本流程,本文主要介绍如何在Trade模块中设置手续费和滑点。

在评估策略的时候,我们设置一定的交易手续费和滑点以模拟真实交易。在策略编写中,我们通常在回测模块的初始化函数中进行设置。

设置手续费

通过调用set_commission方法,在初始化函数中加入如下代码块实现相应的功能: 股票,按成交金额百分比设置手续费,手续费不足5元按5元收取

# 示例代码1
# 交易引擎:初始化函数,只执行一

更新时间:2024-06-14 03:01

双均线股票策略-股票日频_new

策略介绍

双均线策略是一种简单而又广泛使用的技术分析工具,主要用于识别市场趋势的变化和生成交易信号。这种策略涉及两条移动平均线——一条短期(快速)和一条长期(慢速)——并通过观察这两条线的交叉点来决定买入或卖出的时机。

策略流程

  1. 筛选条件:将5日平均收盘价作为短线,50日平均收盘价作为长线;短线上穿长线买入,长线下穿短线卖出
  2. 策略回测:开盘买入,收盘卖出,回测时间为2017-11-24至2024-11-24

策略实现

输入特征模块

  • 将5日均线作为短线,m_avg(close, 5) AS _mean_short;50日均线作为长线,`

更新时间:2024-06-13 06:14

72th Meetup

MeetUP直播答疑 时间:3月28日(周四)19:00 直播地址:B站(https://live.bilibili.com/21929948


以下问题解答,对应源码请访问子目录, 本次MeetUP 直播答疑大纲如下:

\

一、因子分析中的行业因素

  1. 如何构造板块因子或行业因子?
  2. 行业间涨跌的相关性,对于行业的划分颗粒度和行业

更新时间:2024-06-07 10:55

量化交易开发平台有哪些

BigQuant量化交易开发平台是专为量化投资和交易设计的综合软件平台。提供一系列量化开发工具和服务,使交易者和投资者能够开发、测试、优化和执行复杂的量化交易策略。(文末附开发资源汇总

基本概念

量化开发平台通常包括数据分析、策略开发、回测、风险管理和自动化交易功能。它们为量化交易者提供了一个集成环境,用于构建和实施基于数学和统计模型的交易策略。

核心功能

更新时间:2024-06-07 10:48

双均线策略——股票分钟

策略介绍

本策略基于日频双均线策略基础上,衍生至分钟频。涉及两条移动平均线——一条短期(快速)和一条长期(慢速)——并通过观察这两条线的交叉点来决定买入或卖出的时机。

策略流程

  1. 筛选条件:将5日平均收盘价作为短线,40日平均收盘价作为长线;短线上穿长线买入,长线下穿短线卖出。
  2. 策略回测:开盘买卖,回测时间为2024-05-20 09:00:00至2024-05-28 15:00:00。

策略实现

输入特征模块

  • 将5日均线作为短线,m_avg(close, 5) AS _mean_short;40日均线作为长线,`m_avg(close

更新时间:2024-06-06 10:03

Dai读取高频因子构建一个简单多因子策略

https://bigquant.com/codeshare/3b5c66d6-ed5b-46a0-8dc6-3a48cc76a482

\

更新时间:2024-05-27 07:39

基金双均线策略

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


以双均线策略为例,采用新的DataSource接口实现基金数据的读取及策略回测

[https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce26dd718ecc](https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce2

更新时间:2024-05-20 06:13

分钟数据获取

策略案例

AIStudio3.0.0分钟数据获取请转移至:

https://bigquant.com/wiki/doc/5yig6zkf5pww5o2u6i635yw-6fK4a8ZOZx

[https://bigquant.com/experimentshare/893162aea1dc4c4f953f670293646709](https://bigquant.com/experimentshare/893162aea1dc4c4f953f6

更新时间:2024-05-17 01:13

代码策略

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/stockranker-qFD1Xg1Wz3


代码策略

[https://bigquant.com/experimentshare/23b8dad5c75e4e399bb937d498dccb8f](https://bigquant.com/experimentshare/23b8dad5c75e4e399bb937d498dcc

更新时间:2024-05-16 06:36

【历史文档】常见问题-策略回测报错如何处理

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 06:08

【历史文档】常见问题

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 06:03

【历史文档】策略-模拟实盘

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 01:49

【历史文档】策略-查看与分析结果

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 09:52

【历史文档】策略-策略回测

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 09:51

【历史文档】算子样例-HFTrade高频(回测\模拟\实盘)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 08:45

【历史文档】算子样例-Trade回测/模拟

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 08:45

分钟数据周期转换与分时策略构建

导语

很多朋友都在尝试使用平台的分钟数据,下面介绍一下分钟数据的读取与分时策略的构建。

分钟数据的读取

  • 股票分钟数据,以000001.SZA为例:
df1 = DataSource('bar1m_000001.SZA').\
            read(start_date='2015-01-01',end_date='2015-05-01').set_index('date')

更新时间:2024-05-15 02:10

事件策略:动量与反转结合策略

  • 买入条件:选择过去120个交易日涨幅位于前30%的股票作为动量股。同时,选择过去30个交易日内表现最差的前10%股票作为反转股。股票必须在过去5个交易日内有超大单净流入。按照流通市值降序排列
  • 卖出条件:持有期超过30个交易日或涨幅达到20%。
  • 股票过滤:过滤ST,过滤北交所
  • 最大持仓数:15


回测图:

\

策略源码:

请克隆下方策略,前往最新版开发环境3.0中运行

{{membership}

更新时间:2024-04-28 02:08

机器学习:4-线性回归构建因子

  • 运行环境:AIStudio 3.0.0
  • 线性回归:构建因子+单因子策略回测
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/cd8638d7-21c0-4df4-8a29-e9f1cc227df0](https://bigquant.com/codeshare/cd8638

更新时间:2024-04-25 07:38

条件选股:小市值高股息低价策略

  • 声明:本策略仅为示例策略,可根据自己需要自行修改策略逻辑
  • 声明:本策略需要在AIStudio 3.0环境下运行
  • 股票提取:筛选出全市场股息率最高的前 25%的股票,并且只选择股价低于 10 元的票
  • 股票过滤:过滤科创板、过滤北交所、过滤 ST、过滤停牌、过滤涨停、过滤跌停,上市天数大于270天
  • 股票排序:按照流通市值,从小到大排序,选择流通市值最小的前 10 只票
  • 买卖时间:开盘买入,收盘卖出
  • 初始资金:100万
  • 持仓票数:10
  • 持仓周期:15天轮动调仓一次,依然排名前 10 的继续持有,掉出前 10 的卖出


回测图:

![](/wiki/

更新时间:2024-04-25 07:25

请教一个因子收益价格的问题

问题

如下图,请教一下各位大佬,因子分析里面的收益价格,在因子分析的时候是取当天的还是第二天的?

看了alphalens的介绍,这里应该要取第二天的数据,不知道平台的因子分析里面有做了处理没有

策略

{w:100}{w:100}

\

更新时间:2023-06-01 14:26

双均线基金策略-股票日频

https://bigquant.com/experimentshare/5277de40609d4fffa7bbe6df2e5b1231

\

更新时间:2023-06-01 06:18

为什么写出来的策略会在第一天全部买入呢?

问题

为什么写出来的策略会在第一天全部买入呢?

代码

# 本代码由可视化策略环境自动生成 2022年8月13日 13:20
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。


# 回测引擎:初始化函数,只执行一次
def m6_initialize_bigquant_run(context):


    # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
    context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.00

更新时间:2023-06-01 02:13

策略代码是只读的,自己的代码 怎么插进去

问题

策略代码是只读的,自己的代码 怎么插进去

更新时间:2023-06-01 02:13

几个常见AI量化交易问题

年后,北京一个忠实用户问了几个问题,我整理了下,也方便持续交流。

他给我留言的问题如下:


  1. 我们的策略回测时,用的模型有没有把验证集的数据学习了?
  2. 滚动回测的效果远远不如常规的 可能原因时什么?
  3. 短期交易,大户资金流比较重要,有什么帖子或者研报发我提供点思路?
  4. 预测明天股票,一定要放在回测里,收通知吗? 验证集最后一天也成最近一天交易日,可以预测吗?

这是他的原话,一个字没有修改,因为我怕理解有偏差。

回测是否学习验证集数据?

在机器学习算法中,我们把可以获得到的数据分为训练集,验证集和测试集,之所以这样划分,是因

更新时间:2023-06-01 02:13

分页第1页第2页第3页
{link}