成交量震荡,是用来识别市场趋势和反转点的重要工具。为什么说它重要?因为成交量的变化往往可以帮助我们预测股价的走势。当成交量突然增加时,通常意味着大资金正在入场,这时股价很可能随之上涨;反之,成交量的突然减少,可能表明市场兴趣减弱,股价有下跌风险。就像一场草地音乐节,前几场小众独立歌手的演出只有少数人驻足观赏,大家可能三三两两坐在草坪上,但是当人群纷纷涌向前排,人潮迅速聚集时,大家就知道是压轴歌手周杰伦将要登场了。这就好比市场中大资金突然入场,成交量激增,往往伴随着市场趋势的变动。
通过分析成交量震荡,我们可以更好地把握市场的脉搏,做出更明智的投资决策!
那成交量震荡要
更新时间:2024-12-10 06:38
2/3光速对你我来说可能只是一瞬,但对于高频交易公司来说,可能就是事业的全部。在瞬息万变的市场上,棋先一招常常就在微秒之间。
眨眼 0.4 秒,常被形容快,但有家公司花了 1400 万美元,就为了让自己再快 0.07 毫秒( 0.00007 秒),5700 分之一眨眼的时间。
Jump Trading 公司在全球最大期货交易所芝加哥商品交易所数据中心对面,买了一块 12 万平方米的空地。
买了之后,他们没盖楼炒房,也不是为了风水,就是架微波通信基站,用于第一时间把交易请求传到芝加哥商品交易所。
![{w:100}{w:100}](https://n.sinaimg.cn
更新时间:2024-12-05 06:09
量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。
量化交易模型的一般由以下几个部分组成:
1 数据处理模型: 量化交易的基石是数据。这包括了从历史价格、成交量到公司财报、宏观经济指标等各类数据。对这些数据的收集、清洗和处理是构建有效模型的首要步骤。**[BigQuant策略编写平台](ht
更新时间:2024-12-05 02:12
BigQuant是以AI人工智能为核心的量化投资交易平台,为量化投资宽客提供机器学习AI技术、股票期货金融数据、高速精准回测和量化交易接口以及海量高级量化因子,让Quant宽客和量化投资者无门槛地使用AI做更好的投资决策。
宏观层面,宏观经济因素对股票市场整体趋势有重要影响,一些主要因素包括:
更新时间:2024-12-04 07:56
因子就是用来解释和预测资产收益的某些特征或指标。可以把因子想象成一种“魔法工具”,帮助我们理解为什么某些股票或资产表现得更好或更差。
你可能听说过“市盈率”这个因子,它反映了公司股票价格与其每股收益的关系。一般来说,市盈率低的股票可能被低估,而高市盈率的股票可能被高估。投资者可以根据这个因子来决定是否买入或卖出某只股票。
在“一天一因子”中,我们可以每天学习一个新的因子,了解它的原理、如何计算,以及它在投资决策中的应用。逐渐积累这些知识,可以更好地理解量化投资策略的逻辑,不断地往我们的投资工具箱中增加新工具。
\
更新时间:2024-11-29 02:06
在股票投资领域,股票 API 数据源起着至关重要的作用。一个优质的股票 API 数据源首先要具备高度的稳定性。股票 API 需要能够在各种复杂的市场环境和网络条件下持续运行,不会因大量数据请求而频繁出现故障或中断连接。稳定的股票 API 数据源可确保投资者在关键时刻能够及时获取所需数据,避免因数据缺失而导致投资决策失误。
本人近期发现几家使用不错的股票API地址,分享给大家:
iTick:是一家数据代理机构,为金融科技公司和开发者提供可靠的数据源APIs,涵盖外汇API、股票API、加密货币API、指数API等,帮助构建创新的交易和分析工具,目前有免费的套餐可以使用基本可以满足个人
更新时间:2024-11-24 12:05
# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
#...
# 2. 生成卖出订单
print(f'{today} before cash:{context.portfolio.cash}')
if cash_for_sell > 0:
for instrument in sell_instruments:
res = context.order_target(context.symbol
更新时间:2024-09-19 06:51
企业信用评估是投资决策中的重要环节,帮助投资者识别和评估潜在的违约风险,这对于保护投资者的本金和收益至关重要。通过对企业的财务状况、经营状况、管理能力等多方面因素的综合分析,投资者可以更准确地判断企业的信用状况和偿债能力。信用评级提供了一个衡量企业信用风险的有效工具,有助于投资者做出更为明智的投资决策。信用评估可以从财务数据分析、公司背景分析、同行业竞争对比分析等多方面入手。下面主要从财务数据定量分析的角度对企业信用风险的评估进行介绍。
20世纪60年代,美国学者爱德华·阿特曼(Edward Altman)提出了用于财务分析的Z值模型,用于预测企业破产的可能性。该模型通过
更新时间:2024-09-12 10:58
AI量化领域结合了人工智能(AI)、机器学习(ML)以及量化金融的技术和方法。这一领域的目标是使用算法和计算模型来分析大量金融数据,从而做出投资决策或提高交易效率。
一些在AI量化领域重要技术和方法,以及在金融领域的应用:
更新时间:2024-09-05 03:12
无论你如何看待数据科学这门学科,都不能轻易忽视数据的重要性,以及我们分析、组织和理解数据的能力。Glassdoor 网站收集了大量的雇主和员工的反馈数据,发现在美国“25个最好的工作职位清单”中排名第一的是数据科学家。尽管排名摆在那里,但毫无疑问,数据科学家们研究的具体工作内容仍会不断增加。随着机器学习等技术变得越来越普遍,像深度学习这样的新兴领域获得了来自研究人员、工程师以及各大公司更多的关注,数据科学家会继续站在创新浪潮之巅并且推动技术的不断发展。
尽管拥有强大的编码能力非常重要,但数据科学也并非全部都是关于软件工程的(事实上,能够熟练掌握python已经足够很好的开展工作了)。数据科学
更新时间:2024-06-12 05:51
1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha
收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或者应该如何切入投资管理领域。
和被动组合管理(passive porfolio management)相比,主动组合管理(active porfolio management)更显投资水平的能力,或者说运气。被动投资力求完全复制相应的基准成分股及其权重,所以每当某指数做成分股的调整时,新入选的股票
更新时间:2024-06-12 02:56
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/9d63b4ca46fc40bfac5fa7843d4f89cf
\
更新时间:2024-06-11 02:40
知识库的策略分析里面有个“标记买卖点”的代码,能不能请老师把这个代码讲解一下,方面以后分析其它策略的时候使用。链接在这里:标记买卖点
\
https://www.bilibili.com/video/BV1554y1f7Rf/
[https://bigquant.com/experimentshare/1f66fd8421044f2a9884c9f1d3614ce1](ht
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
如何利用60分钟K线来合成120分钟K线呢?
https://www.bilibili.com/video/BV1d54y1d7tv/
https://bigquant.com/experimentshare/4e081ef44d3246f48551c6eee74f629d
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
基于财务数据构建策略
\
\
[https://bigquant.com/experim
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。
\
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
风控和择时:情绪周期如何用于追涨策略
[https://www.bilibili.com/video/BV1ui4y1m7Nx?spm%5Fid%5Ffrom=333.999.0.0](https://www.bilibili
更新时间:2024-06-07 10:55
资产定价模型(Asset Pricing Models)是金融学中用于评估或预测金融资产价值的理论和模型。这些模型基于不同的假设,用于不同类型的资产,包括股票、债券、衍生品等,通过量化资产的预期收益与其所承担的风险之间的关系,帮助投资者评估投资机会并做出明智的投资决策。
以下是一些重要的资产定价模型:
更新时间:2024-06-07 10:48
在量化交易中,我们常听到和看到因子是量化研究中关键的一环。一个量化策略是5个因子的效果好,还是50个因子的效果好?因子之间有什么样的关联和差异?对量化交易策略收益的影响如何?那么因子投资是什么?为什么量化交易要用因子?
我们可以将投资决策因素看作是营养对食物的影响。根据营养成分,您可以决定食用哪种食物以及食用多少。因素对于了解特定投资方法的风险和回报是不可或缺的。
因此,每个交易者都会根据自身对回报的风险承受能力来投资风险和回报因素相似的股票。在本文中,我们将详细了解因子投资。
更新时间:2024-05-22 10:26
本文将介绍经典的ROE策略,并通过编写简单的策略示例进行回测。
ROE策略是一种常用的财务分析和投资策略,特别在股票投资领域。它主要基于公司股本回报率的高低来评估和选择投资对象。
高ROE公司通常具有较强的盈利能力:
高ROE公司通常具有良好的管理和业务模式:
高ROE公司通常具有较高的股东回报:
更新时间:2024-05-22 08:29
通过数据过滤我们可以在预测的时候避开ST股和退市股,但如果很不幸我们的买入持仓中有股票变成了ST股或者退市股时,我们应该如何快速卖出逃脱呢?本节我们就聊聊如何处理持仓中的“雷”股。
我们知道,模板的策略逻辑是卖出每日预测排序靠后的股票。那么尝试思考这样一个场景:某个持仓的股票突然发布公告启动ST或者退市流程,好股变成了“”雷“”股。但是很可能我们的排序预测模型始终意识不到这个雷,而导致此股的打分排序始终不是靠后的。这会导致这些烫手的山芋无法脱手,自爆仓中。不仅导致策略无法卖出此股,还会因其占用了资金而无法买入新的股票。
因此,我们在每天的交易逻辑前加入“雷股判断”,一旦发现持
更新时间:2024-05-22 03:42